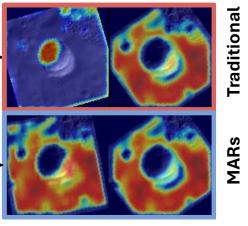
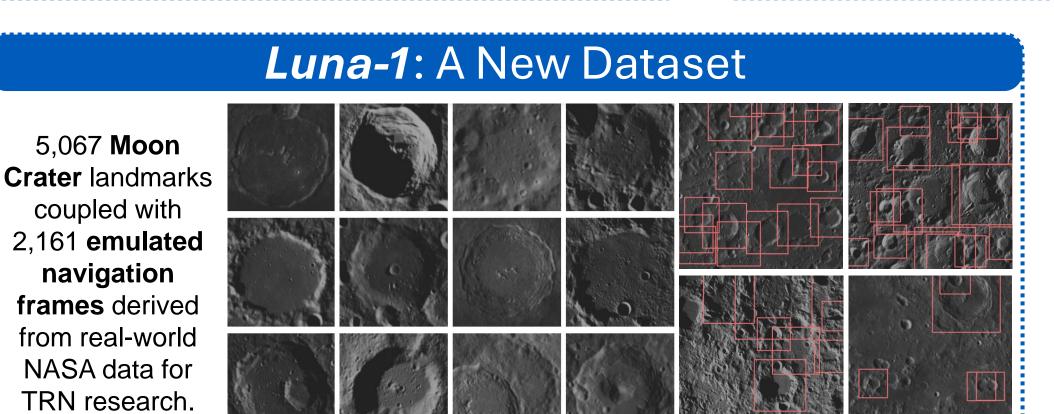
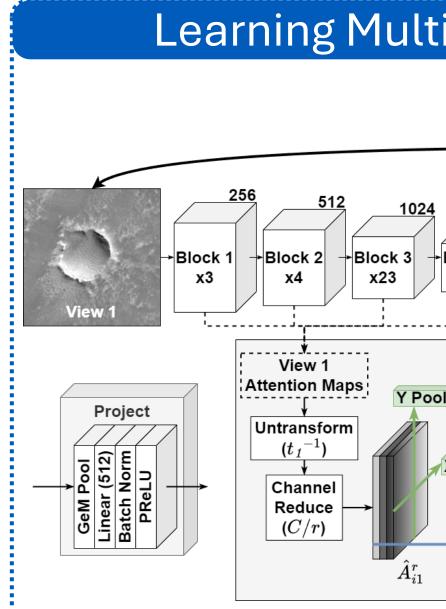

MARs: Multi-view Attention Regularizations for Patch-based Feature Recognition of Space Terrain

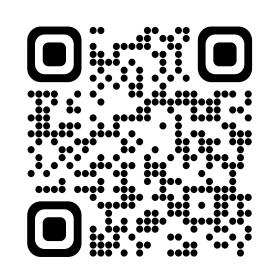

Timothy Chase Jr, Karthik Dantu University at Buffalo

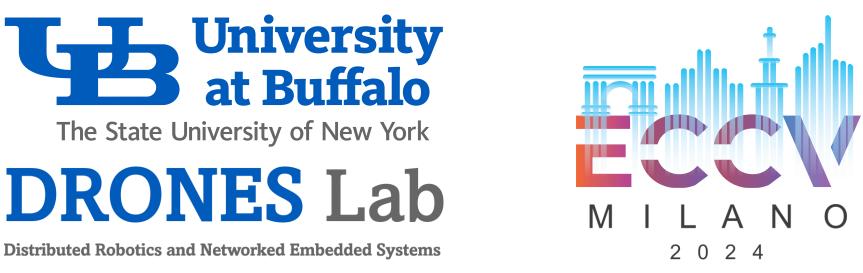
Motivation


Background: Spacecraft track pre-gathered, handcrafted patch features (landmarks) with template matching for Terrain Relative Navigation (TRN).

Problem: Object detection-style methods are being deployed for increased autonomy; description still an open problem. Metric learning unable to handle challenging appearance change present in TRN.



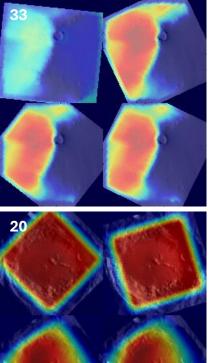


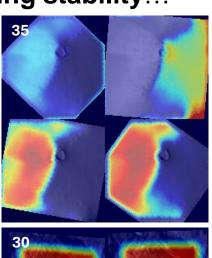

Contribution: We propose soft-similarity constraints to align the *what* and *where* of attention information between multi-view features, improving recognition.

.....

Learning Multi-view Attention Similarity Constraints Improved Training Attention learning with MARs (bottom pair) evolves similarly over time, increasing training stability... $t_1 \in \mathcal{T}$ $t_{\,2}\in\mathcal{T}$ Block 4 Block 4 Project Project Block 3 Block 2 x23 х3 х3 x4 х3 \mathcal{L}_{ML} View 2 $f(\cdot) \mid g(\cdot$ View 2 Attention Maps Mini Project Untransform (t_2^{-1}) X Pool Project Channel Pool Norm eLU \mathcal{L}_{ChMARs} Reduce (C/r)Mini Proiec Mini Proiect $gc_i(\cdot)$ $gc_i(\cdot)$ Multi-view Attention Regularizations (MARs) **convergence** compared with RIC CA (top pair).

Boosting Landmark Recognition Performance

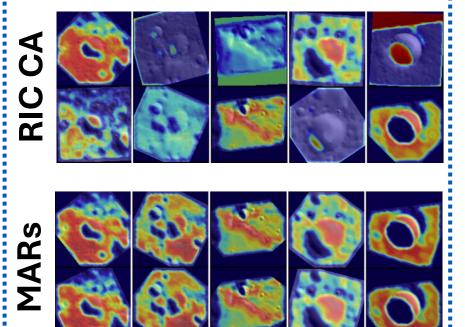

conv2d SE: conv2d and Squeeze-Excitation (channel only) attention. RIC CA: Rotation-invariant convolution and Coordinate (channel and spatial) Attention. MARs: RIC CA with MARs multi-view attention alignment.


Moon Navigation Moon Lost-in-SpaceARs urs)conv2d RIC MARs SE CA (Ours)conv2d RIC MARs SE CA (Ours)
urs) SE CA (Ours) SE CA (Ours)
58.07 37.97 38.46 94.03 96.68 92.31
.57 37.69 3.12 36.68 86.34 88.06 90.05
.69 48.25 32.00 57.68 94.83 83.16 96.29
.84 14.34 23.34 24.66 61.41 77.98 75.46
.78 64.17 - <u>66.31</u> 97.21 - 96.02
0.27 58.27 53.92 35.87 94.69 93.24 91.38
.45 40.63 81.17
.11 17.92 42.28 37.50 89.39 90.32 90.58
61.26 60.53 32.67 96.42 93.77 36.87
)

MARs raises recognition accuracy

for many metric learning losses on navigation-style multiview description with challenging appearance change and leads to new state-of-the-arts

across environments.



... and promotes **faster**, more uniform

Visual Alignment

