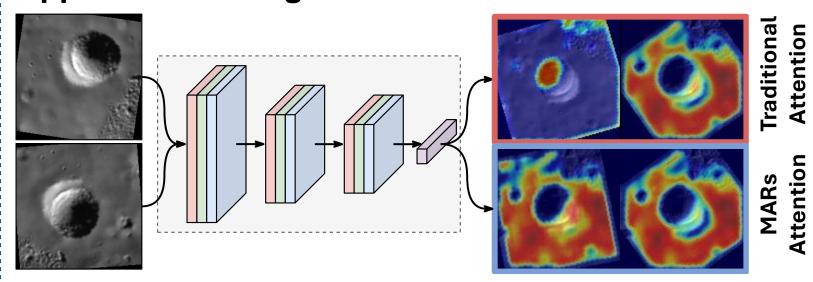

MARs: Multi-view Attention Regularizations for Patch-based Feature Recognition of Space Terrain

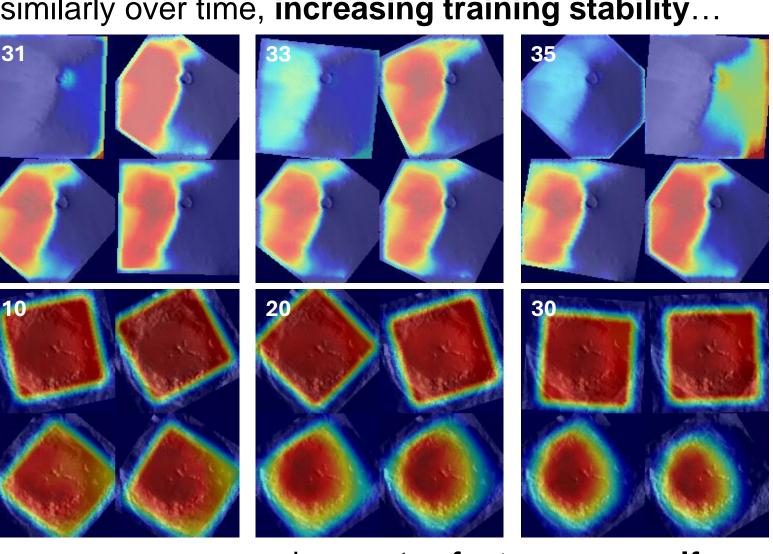
Timothy Chase Jr, Karthik Dantu University at Buffalo



Motivation

Background: Spacecraft track pre-gathered, handcrafted patch features (landmarks) with template matching for Terrain Relative Navigation (TRN).

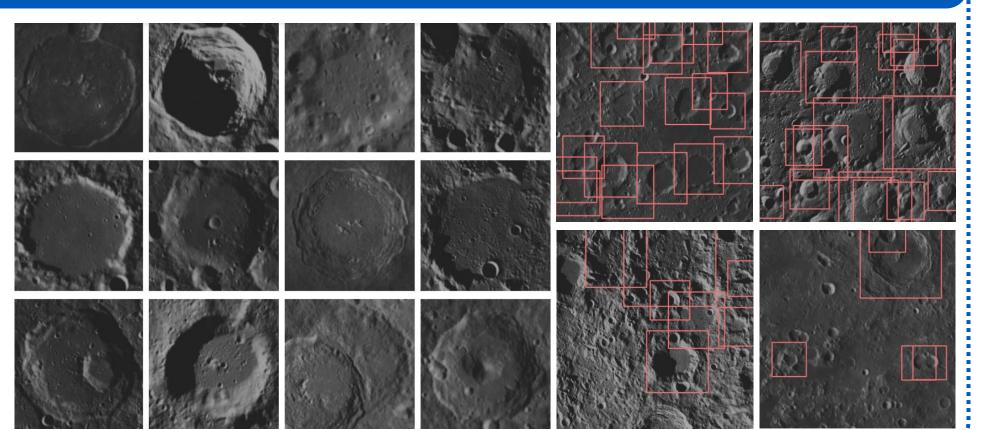
Problem: Object detection-style methods are being deployed for increased autonomy; description still an open problem. Metric learning unable to handle harsh appearance change in TRN.



Contribution: We propose soft-similarity constraints to make attention view-aware, increasing recognition on multi-view features.

Learning Multi-view Attention Similarity Constraints $t_1 \in \mathcal{T}$ $t_2 \in \mathcal{T}$ $t_3 \in \mathcal{T}$ $t_4 \in \mathcal{T}$ $t_5 \in \mathcal{T}$ $t_6 \in \mathcal{T}$ $t_6 \in \mathcal{T}$ $t_8 \in \mathcal{T}$ $t_8 \in \mathcal{T}$ $t_8 \in \mathcal{T}$ $t_8 \in \mathcal{T}$ $t_9 \in \mathcal{T}$ t

Improved Training


Attention learning with MARs (bottom pair) evolves similarly over time, **increasing training stability**...

... and promotes **faster**, **more uniform convergence** compared with RIC CA (top pair).

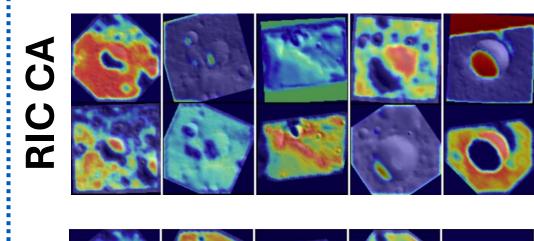
Luna-1: A New Dataset

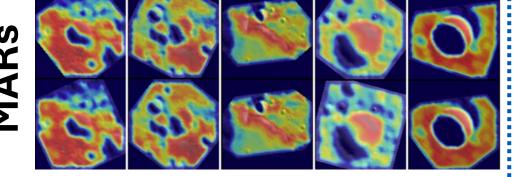
5,067 Moon
Crater landmarks
coupled with 2,161
emulated
navigation
frames derived
from real-world
NASA data for
TRN research.

Boosting Landmark Recognition Performance

conv2d SE: conv2d and Squeeze-Excitation (channel only) attention.

RIC CA: Rotation-invariant convolution and Coordinate (channel and spatial) Attention.


MARs: RIC CA with MARs multi-view attention alignment.


$\mathcal{L}_{ ext{ML}}$		Incremental Recall@1													
	Earth Stadium			Mars Crater			Moon Crater			Moon Navigation Moon Lost-in-Space					
	conv2d	RIC	MARs	conv2d	RIC	MARs	conv2d	RIC	MARs	conv2d	RIC	MARs	conv2d	RIC	MARs
	\mathbf{SE}	CA	(Ours)	$_{ m SE}$	CA	(Ours)	\mathbf{SE}	CA	(Ours)	SE	CA	(Ours)	SE	CA	(Ours)
Circle	4.79	5.11	5.13	3.59	60.81	12.56	43.36	60.09	30.46	58.07	37.97	38.46	94.03	96.68	92.31
DR-MS	4.33	5.27	54.32	4.04	48.48	4.04	62.55	2.47	64.57	37.69	3.12	36.68	86.34	88.06	$\boldsymbol{90.05}$
NTXent	12.23	7.75	8.59	4.49	34.10	34.01	69.85	77.06	81.69	48.25	32.00	57.68	94.83	83.16	96.29
PNP	4.64	5.27	4.66	3.14	16.70	5.14	10.24	15.54	40.84	14.34	23.34	24.66	61.41	77.98	75.46
Proxy Anchor	4.48	72.86	78.06	3.44	10.45	71.10	94.56	_	94.78	64.17	_	66.31	97.21	_	96.02
ProxyNCA++	4.33	4.64	12.00	4.04	7.71	4.79	56.03	71.23	70.27	58.27	53.92	35.87	94.69	93.24	91.38
Subcenter ArcFace	4.49	4.48	4.19	3.29	4.99	38.69	_	_	20.45	_	_	40.63	_	_	81.17
SupCon	4.19	5.80	46.43	4.65	57.52	49.19	16.73	79.42	84.11	17.92	42.28	37.50	89.39	90.32	90.58
Proxy Synthesis	4.33	39.41	22.57	4.03	4.97	35.14	91.40	64.71	17.47	61.26	60.53	32.67	96.42	93.77	36.87

MARs raises
recognition accuracy
for many metric

for many metric
learning losses on
navigation-style multiview description with
challenging
appearance change
and leads to new
state-of-the-arts
across environments.

Visual Alignment

