
Process	

CSE	421/521:	Opera4ng	Systems	
Karthik	Dantu	

Slides	adopted	from	CS162	class	at	Berkeley,	CSE	451	at	U-Washington	and	CSE	421	by	Prof	Kosar	at	UB	

Logis4cs	–	Prior	Ac4on	Items	

•  Join	Piazza	
•  Set	up	development	environment:	VirtualBox	
+	Ubuntu	16.04	

•  Implement	assignment#0	and	test	in	the	
environment	

•  Form	groups	

Logis4cs	-	II	

•  Assignment	1	out	
•  Recita4ons	start	this	week	

– Wed	10-10:50	(NSC	210)	
– Fri	8-8:50	(Park	250)	

•  Recita4on:	Basic	Pintos	discussion	as	well	as	
C/git/Unix	tools	

•  Schedule	up	on	website	–	check	for	conflicts!	

Logis4cs	–	New	ac4on	Items	

•  Assignment	1	out	
– Read	the	code	
– Compile/test	
– Learn	structure	–	use	prin%s	where	you	can	to	
understand	flow	

•  Test	sample	programs	from	class	

Recall:	Four	fundamental	OS	concepts	
•  Thread	

–  Single	unique	execu4on	context	
–  Program	Counter,	Registers,	Execu4on	Flags,	Stack	

•  Address	Space	with	Transla4on	
–  Programs	execute	in	an	address	space	that	is	dis4nct	from	the	
memory	space	of	the	physical	machine	

•  Process	
–  An	instance	of	an	execu4ng	program	is	a	process	consis-ng	of	
an	address	space	and	one	or	more	threads	of	control	

•  Dual	Mode	opera4on/Protec4on	
–  Only	the	“system”	has	the	ability	to	access	certain	resources	
–  The	OS	and	the	hardware	are	protected	from	user	programs	
and	user	programs	are	isolated	from	one	another	by	
controlling	the	transla-on	from	program	virtual	addresses	to	
machine	physical	addresses	

6	

Process	Concept	
•  Process	is	a	program	in	
execu4on	
–  A	process	image	consists	of	
three	components	

–  an	executable	program	
–  the	associated	data	needed	by	
the	program	

•  the	execu4on	context	of	the	
process,	which	contains	all	
informa4on	the	O/S	needs	to	
manage	the	process	(ID,	state,	
CPU	registers,	stack,	etc.)	

	 Typical process image implementation

Stallings, W. (2004) Operating Systems:
Internals and Design Principles (5th Edition).

user
address
space

Process	Control	Block	
(Assume	single	threaded	processes	for	now)		

	
•  Kernel	represents	each	process	as	a	process	control	block	

(PCB)	
–  Status	(running,	ready,	blocked,	…)	
–  Registers,	SP,	…	(when	not	running)	
–  Process	ID	(PID),	User,	Executable,	Priority,	…	
–  Execu4on	4me,	…	
–  Memory	space,	transla4on	tables,	…	

•  Kernel	Scheduler	maintains	a	data	structure	containing	the	
PCBs	

•  Scheduling	algorithm	selects	the	next	one	to	run	

Recall:	give	the	illusion	of	mul4ple	processors?	

vCPU3vCPU2vCPU1

Shared Memory

•  Assume	a	single	processor.		How	do	we	provide	the	
illusion	of	mul4ple	processors?	
– Mul4plex	in	4me!	
– Mul4ple	“virtual	CPUs”	

•  Each	virtual	“CPU”	needs	a	structure	to	hold,	i.e.,	PCB:	
–  Program	Counter	(PC),	Stack	Pointer	(SP)	
–  Registers	(Integer,	Floa4ng	point,	others…?)	

•  How	switch	from	one	virtual	CPU	to	the	next?	
–  Save	PC,	SP,	and	registers	in	current	PCB	
–  Load	PC,	SP,	and	registers	from	new	PCB	

•  What	triggers	switch?	
–  Timer,	voluntary	yield,	I/O,	other	things	

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

9	

Process	State	

•  As	a	process	executes,	it	changes	state	
–  new:		The	process	is	being	created	
–  ready:		The	process	is	wai4ng	to	be	assigned	to	a	processor	
–  running:		Instruc4ons	are	being	executed	
–  wai+ng:		The	process	is	wai4ng	for	some	event	to	occur	
–  terminated:		The	process	has	finished	execu4on	

Scheduler	

•  Scheduling:	Mechanism	for	deciding	which	processes/threads	
receive	the	CPU	

•  Lots	of	different	scheduling	policies	provide	…	
–  Fairness	or	
–  Real4me	guarantees	or	
–  Latency	op4miza4on	or	..	

if (readyProcesses(PCBs)) {
 nextPCB = selectProcess(PCBs);
 run(nextPCB);

} else {
 run_idle_process();

}

Process	Crea4on	

•  Some	events	that	lead	to	process	crea4on		
–  the	system	boots	

•  when	a	system	is	ini4alized,	several	background	processes	
or	“daemons”	are	started	(email,	logon,	etc.)	

–  a	user	requests	to	run	an	applica4on	
•  by	typing	a	command	in	the	CLI	shell	or	double-clicking	in	
the	GUI	shell,	the	user	can	launch	a	new	process	

–  an	exis4ng	process	spawns	a	child	process	
•  for	example,	a	server	process	(i.e.	web	server,	file	server)	
may	create	a	new	process	for	each	request	it	handles	

–  the	init	daemon	waits	for	user	login	and	spawns	a	
shell	

Pukng	it	together:	web	server	

Request

Reply
(retrieved by web server)

Client Web Server

Pukng	it	together:	web	server	

Server

Kernel

Hardware

request
buffer

reply
buffer

11. kernel copy
 from user buffer
 to network buffer

Network
interface Disk interface

12. format outgoing
 packet and DMA

6. disk
 request

10. network
 socket
 write

1. network
 socket
 read

2. copy arriving
 packet (DMA)

syscall

wait

interrupt

3. kernel
 copy

RTU

5. file
 readsyscall

8. kernel
 copy

RTU

7. disk data
 (DMA)

interrupt

4. parse request 9. format reply

Request Reply

Process	Tree	in	Linux	

Recall:	3	types	of	Kernel	Mode	Transfer	
•  Syscall	

–  Process	requests	a	system	service,	e.g.,	exit	
–  Like	a	func4on	call,	but	“outside”	the	process	
–  Does	not	have	the	address	of	the	system	func4on	to	call	
–  Like	a	Remote	Procedure	Call	(RPC)	–	for	later	
– Marshall	the	syscall	ID	and	arguments	in	registers	and	execute	
syscall	

•  Interrupt	
–  External	asynchronous	event	triggers	context	switch	
–  e.g.,	Timer,	I/O	device	
–  Independent	of	user	process	

•  Trap	or	Excep4on	
–  Internal	synchronous	event	in	process	triggers	context	switch	
–  e.g.,	Protec4on	viola4on	(segmenta4on	fault),	Divide	by	zero,	
…	

User/Kernel	(Privileged)	Mode	
User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Implemen4ng	Safe	Kernel	Mode	Transfers	

•  Important	aspects:	
– Separate	kernel	stack	
– Controlled	transfer	into	kernel	(e.g.,	syscall	table)	

•  Carefully	constructed	kernel	code	packs	up	the	
user	process	state	and	sets	it	aside	
– Details	depend	on	the	machine	architecture	

•  Should	be	impossible	for	buggy	or	malicious	user	
program	to	cause	the	kernel	to	corrupt	itself	

Need	for	Separate	Kernel	Stacks	
•  Kernel	needs	space	to	work	
•  Cannot	put	anything	on	the	user	stack	(Why?)	
•  Two-stack	model	

–  OS	thread	has	interrupt	stack	(located	in	kernel	memory)	plus	User	
stack	(located	in	user	memory)	

–  Syscall	handler	copies	user	args	to	kernel	space	before	invoking	
specific	func4on	(e.g.,	open)	

–  Interrupts	(???)	

Kernel Stack

running

main

User Stack proc1
proc2

...

ready to run

main
proc1
proc2

...

user CPU
 state

waiting for I/O

main
proc1
proc2
syscall

user CPU
 state
 syscall
handler

I/O driver
top half

Before	

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

During	

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

SS
ESP

 EFLAGS
CS
EIP

error

Kernel	System	Call	Handler	
•  Vector	through	well-defined	syscall	entry	points!	

–  Table	mapping	system	call	number	to	handler	
•  Locate	arguments	

–  In	registers	or	on	user	(!)	stack	
•  Copy	arguments	

–  From	user	memory	into	kernel	memory	
–  Protect	kernel	from	malicious	code	evading	checks	

•  Validate	arguments	
–  Protect	kernel	from	errors	in	user	code	

•  Copy	results	back		
–  Into	user	memory	

Hardware	support:	Interrupt	Control	
•  Interrupt	processing	not	visible	to	the	user	
process:	
– Occurs	between	instruc4ons,	restarted	transparently	
– No	change	to	process	state	
– What	can	be	observed	even	with	perfect	interrupt	
processing?	

•  Interrupt	Handler	invoked	with	interrupts	
‘disabled’	
–  Re-enabled	upon	comple4on	
– Non-blocking	(run	to	comple4on,	no	waits)	
–  Pack	up	in	a	queue	and	pass	off	to	an	OS	thread	for	
hard	work	

•  wake	up	an	exis4ng	OS	thread		

Hardware	support:	Interrupt	Control	
•  OS	kernel	may	enable/disable	interrupts	

– On	x86:	CLI	(disable	interrupts),	STI	(enable)	
– Atomic	sec4on	when	select	next	process/thread	to	
run	

– Atomic	return	from	interrupt	or	syscall	

•  HW	may	have	mul4ple	levels	of	interrupt	
– Mask	off	(disable)	certain	interrupts,	eg.,	lower	
priority	

– Certain	Non-Maskable-Interrupts	(NMI)	
•  e.g.,	kernel	segmenta4on	fault	

Interrupt	Controller	

•  Interrupts	invoked	with	interrupt	lines	from	devices	
•  Interrupt	controller	chooses	interrupt	request	to	honor	

–  Mask	enables/disables	interrupts	
–  Priority	encoder	picks	highest	enabled	interrupt		
–  Sopware	Interrupt	Set/Cleared	by	Sopware	
–  Interrupt	iden4ty	specified	with	ID	line	

•  CPU	can	disable	all	interrupts	with	internal	flag	
•  Non-Maskable	Interrupt	line	(NMI)	can’t	be	disabled	

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

T
im

er

Int Disable

How	do	we	take	interrupts	safely?	
•  Interrupt	vector	

–  Limited	number	of	entry	points	into	kernel	
•  Kernel	interrupt	stack	

–  Handler	works	regardless	of	state	of	user	code	
•  Interrupt	masking	

–  Handler	is	non-blocking	
•  Atomic	transfer	of	control	

–  “Single	instruc4on”-like	to	change:		
•  Program	counter	
•  Stack	pointer	
•  Memory	protec4on	
•  Kernel/user	mode	

•  Transparent	restartable	execu4on	
–  User	program	does	not	know	interrupt	occurred	

Can	a	process	create	a	process	?	
•  Yes!	Unique	iden4ty	of	process	is	the	“process	ID”	(or	PID)	
•  fork()	system	call	creates	a	copy	of	current	process	with	a	
new	PID	

•  Return	value	from	fork():	integer	
– When	>	0:		

•  Running	in	(original)	Parent	process	
•  return	value	is	pid	of	new	child	

– When	=	0:		
•  Running	in	new	Child	process	

– When	<	0:	
•  Error!		Must	handle	somehow	
•  Running	in	original	process	

•  All	state	of	original	process	duplicated	in	both	Parent	and	
Child!	
– Memory,	File	Descriptors	(next	topic),	etc…	

fork1.c	
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
 char buf[BUFSIZE];
 size_t readlen, writelen, slen;
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 exit(1);
 }
 exit(0);
}

fork2.c	
 int status;
 …
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 tcpid = wait(&status);
 printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 }
 …

Process	Races:	fork3.c	

•  Ques4on:	What	does	this	program	print?	
•  Does	it	change	if	you	add	in	one	of	the	sleep()	statements?	

int i;
cpid = fork();
if (cpid > 0) {
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 for (i=0; i<10; i++) {
 printf("[%d] parent: %d\n", mypid, i);
 // sleep(1);
 }
 } else if (cpid == 0) {
 mypid = getpid();
 printf("[%d] child\n", mypid);
 for (i=0; i>-10; i--) {
 printf("[%d] child: %d\n", mypid, i);
 // sleep(1);
 }
 }

UNIX	Process	Management	
•  UNIX	fork	–	system	call	to	create	a	copy	of	the	current	

process,	and	start	it	running	
–  No	arguments!	

•  UNIX	exec	–	system	call	to	change	the	program	being	
run	by	the	current	process	

•  UNIX	wait	–	system	call	to	wait	for	a	process	to	finish	

•  UNIX	signal	–	system	call	to	send	a	no4fica4on	to	
another	process	

•  UNIX	man	pages:	fork(2),	exec(3),	wait(2),	signal(3)	

UNIX	Process	Management	

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

main () {
 ...

}

exec

wait

fork

Shell	

•  A	shell	is	a	job	control	system		
– Allows	programmer	to	create	and	manage	a	set	of	
programs	to	do	some	task	

– Windows,	MacOS,	Linux	all	have	shells	

•  Example:	to	compile	a	C	program	
cc	–c	sourcefile1.c	
cc	–c	sourcefile2.c	
ln	–o	program	sourcefile1.o	sourcefile2.o	
./program	

Signals	–	infloop.c	
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum)
{
 printf("Caught signal %d - phew!\n",signum);
 exit(1);
}

int main() {
 signal(SIGINT, signal_callback_handler);

 while (1) {}
}

Recall:	UNIX	System	Structure	

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

How	Does	the	Kernel	Provide	
Services?	

•  You	said	that	applica4ons	request	services	from	
the	opera4ng	system	via	syscall,	but	…	

•  I’ve	been	wri4ng	all	sort	of	useful	applica4ons	
and	I	never	ever	saw	a	“syscall”	!!!	

•  That’s	right.			
•  It	was	buried	in	the	programming	language	
run4me	library	(e.g.,	libc.a)	

•  …	Layering	

OS	Run-Time	Library	

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window
Manager

…
OS library OS library OS library

A	Kind	of	Narrow	Waist	
Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

Key	Unix	I/O	Design	Concepts	
•  Uniformity	

–  file	opera4ons,	device	I/O,	and	interprocess	communica4on	
through	open,	read/write,	close	

–  Allows	simple	composi4on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra4on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	

•  Kernel	buffered	writes	
–  Comple4on	of	out-going	transfer	decoupled	from	the	applica4on,	

allowing	it	to	con4nue	
•  Explicit	close	

I/O	&	Storage	Layers	
High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Summary	
•  Process:	execu4on	environment	with	Restricted	Rights	

–  Address	Space	with	One	or	More	Threads	
–  Owns	memory	(address	space)	
–  Owns	file	descriptors,	file	system	context,	…	
–  Encapsulate	one	or	more	threads	sharing	process	resources	

•  Interrupts	
–  Hardware	mechanism	for	regaining	control	from	user	
–  No4fica4on	that	events	have	occurred	
–  User-level	equivalent:	Signals	

•  Na4ve	control	of	Process	
–  Fork,	Exec,	Wait,	Signal	

•  Basic	Support	for	I/O	
–  Standard	interface:	open,	read,	write,	seek	
–  Device	drivers:	customized	interface	to	hardware	

Logis4cs	–	New	ac4on	Items	

•  Assignment	1	out	
– Read	the	code	
– Compile/test	
– Learn	structure	–	use	prin%s	where	you	can	to	
understand	flow	

•  Test	sample	programs	from	class	

