Introduction to I/0O

CSE 421/521: Operating Systems
Karthik Dantu

Slides adopted from CS162 class at Berkeley, CSE 451 at U-Washington and CSE 421 by Prof Kosar at UB

Assignment #1 - Clarifications

Grading

— 5% - Design

— 10% - Implementation/tests

Git

— Working with github to set up repos
— Should be up by early next week

Details of scheduling
— In coming classes and recitations
— Assignment given early

Deadlines
— 9/26 - Design document
— 10/3 - Implementation via Autograder

Recall: UNIX System Structure

(the users)

Applications

User Mode

shells and commands
compilers and interpreters
system libraries

Standard Libs

system-call interface to the kernel

— signals terminal file system CPU scheduling
Kernel Mode =) handling swapping block /O page replacement
N character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
Hardware terminals disks and tapes physical memory

How Does the Kernel Provide Services?

You said that applications request services from the
operating system via syscall, but ...

I’'ve been writing all sort of useful applications and |
never ever saw a “syscall” !l

That’s right.

It was buried in the programming language runtime
library (e.g., 1ibc. a)

... Layering

OS Run-Time Library

Proc
2]
OS

]
OS library

]
OS library m

OS

A Kind of Narrow Waist

Word Processing
Comepilers Web Browsers

Web Servers
Application / Service

Portable OS Library OS

System Call

User

System
Portable OS Kernel

Software Platform support, Device Drivers

Hardware x86 PowerPC ARM

PC
Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI Graphics Thunderbolt

Key Unix I/O Design Concepts

e Uniformity
— file operations, device 1/O, and interprocess
communication through) /)

— Allows simple composition of programs
« find | grep | wc ..

— Provides opportunity for access control and arbitration
— Sets up the underlying machinery, i.e., data structures

— Even if blocks are transferred, addressing is in bytes

— Streaming and block devices looks the same
— read blocks process, yielding processor to other task

Putting it together: web server

Kernel buffer

) reads
Server 4. parsefeq
requ \
|. netwo kernel 10. network |
socket opy socket ! erne
syscall | read write 5)’5C3||m q°PY
Kernel é U | I. kernel copy Ry U
from user buffer v
to network buffer
interrupt 3 o _ interrupt
2. copy arriving |l2.format outgoing 6. disk 7. disk data
packet (DMA) packet and DMA request (DMA)
Hardware
Network v
interface Disk interface
\ 4
Request Reply

Key Unix I/O Design Concepts

* Uniformity

— file operations, device 1/O, and interprocess communication
through , / ,

— Allows simple composition of programs
« find | grep | wc ..

— Provides opportunity for access control and arbitration
— Sets up the underlying machinery, i.e., data structures

— Even if blocks are transferred, addressing is in bytes

— Streaming and block devices looks the same
— read blocks process, yielding processor to other task

— Completion of out-going transfer decoupled from the
application, allowing it to continue

Putting it together: web server

Kernel buffer

Server writes 9. format reply
request reply
buffer buffer
A
etwork | 3.kernel 10. network | 8| |
ket copy e ile . kerne
SYs ad o write SY ad 6 copy
Kernel RTU /1. kernel copy RTU
from user buffer
to network buffer
interrupt 3 o _ interrupt
2. copy arriving |l2. format outgoing % ahdk 7 disk data
packet (DMA) packet and DMA request (DMA)
Hardware
Network v
interface Disk interface

Request

Reply

Key Unix I/O Design Concepts

Uniformity

— file operations, device 1/0, and interprocess communication
through open, read/write, close

— Allows simple composition of programs
« find | grep | wc ..

Open before use

— Provides opportunity for access control and arbitration

— Sets up the underlying machinery, i.e., data structures
Byte-oriented

— Even if blocks are transferred, addressing is in bytes
Kernel buffered reads

— Streaming and block devices looks the same
— read blocks process, yielding processor to other task

Kernel buffered writes

— Completion of out-going transfer decoupled from the application,
allowing it to continue

Explicit close

/O & Storage Layers

Application / Service

streams
High Level I1/O
Low Level /O handles
Syscall registers
File System descriptors
|/O Driver Commands and Data Transfers

L |J_—|_Q Disks, Flash, Controllers, DMA

The File System Abstraction
* High-level idea

— Files live in hierarchical namespace of filenames
* File
— Named collection of data in a file system

— File data
* Text, binary, linearized objects

— File Metadata: information about the file
* Size, Modification Time, Owner, Security info
e Basis for access control

* Directory
— “Folder” containing files & Directories
— Hierachical (graphical) naming
e Path through the directory graph

* Uniquely identifies a file or directory
— /home/ff/csl162/public_html/fal7/index.html

— Links and Volumes (later)

C High-Level File APl — Streams

(review)

 Operate on “streams” - sequence of bytes, whether
text or data, with a position

#include <stdio.h>

FILE *fopen(const char *filename, const ch);

int fclose(FILE *fp);

e

r rb Open existing file for reading e
W wb Open for writing; created if does not exist / (q;é‘

a ab Open for appending; created if does not exist ;\&t\y

r+ rb+ Open existing file for reading & writing. <Qo/

w+ wb+ Open for reading & writing; truncated to zero if exists, create gthervvise

at ab+ Open for reading & writing. Created if does not exist. Read from beginning,

write as append

Connecting Processes, Filesystem, and
Users

* Process has a ‘current working directory’

 Absolute Paths
— /home/kdantu/cs421

* Relative paths
— index.html, ./index.html - current WD
— ../index.html - parent of current WD
— ~, ~kdantu -home directory

C API Standard Streams

Three predefined streams are opened implicitly when a
program is executed

— FILE *stdin —normal source of input, can be redirected
— FILE *stdout —normal source of output, can be redirected
— FILE *stderr —diagnostics and errors, can be redirected

STDIN / STDOUT enable composition in Unix

— Recall: Use of pipe symbols connects STDOUT and STDIN
« find | grep | wc ..

C high level File APl — Stream Ops

##tinclude <stdio.h>
// character oriented

int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn >0 or EOF

int fgetc(FILE * fp);
char *fgets(char *gyf, intap, FILE *fp);

DESCRIPTION

The fge) funckidon reads at most o less than the number of characters
specAitTied by size from the given stream and stores them in the string
str. Reading stops when a newline character is found, at end-of-file or
error. The newline, if any, 1is retained. If any characters are read and
there is no error, a '\@' character is appended to end the string.

C high level File APl — Stream Ops

#include <stdio.h>
// character oriented

int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn >0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size t fread(void *ptr, size t size of elements,
size t number_of elements, FILE *a file);

size t fwrite(const void *ptr, size t size of elements,
size_t number_of _elements, FILE *a file);

C high level File APl — Stream Ops

#include <stdio.h>
// character oriented

int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn >0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size t fread(void *ptr, size t size of elements,
size t number_of elements, FILE *a file);

size t fwrite(const void *ptr, size t size of elements,
size t number_of elements, FILE *a file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format,

cee)s

int fscanf(FILE *restrict stream, const char *restrict format,

R I

Example Code

#include <stdio.h>

#define BUFLEN 256
FILE *outfile;
char mybu{]

int storetofile
char *instring;

outfile = fopen("/us
if (loutfile)

return (-1); // ErroN
while (1) {

instring = fgets(mybuf¢_ BUFLEN,>

// Check for error or end of file (”~D)
if (!instring || strlen(instring)==0) break;

homes/testing/tokens", "w+");

stdin); // catches overrun!

// Write string to output file, exit on error
if (fputs(instring, outfile)< ©) break;
}

fclose(outfile); // Flushes from userspace

C Stream API positioning

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)

void rewind (FILE *stream) High Level 1/0
offset (SEEK_SET) offset (SEEK_END) Low Level I/O
Syscall
\/ File System
offset (SEEK_CUR) Upper I/O Driver

Lower 1/O Driver
I

* Preserves high level abstraction of uniform stream of objects

* Adds buffering for performance

What’'s below the surface ??

Application / Service

High Level I/O streams
Low Level I/O handles \
Syscall registers
File System descriptors
I/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DM&

oice Coil__ I :1_%

C Low level I/O

e Operations on File Descriptors — as OS object
representing the state of a file

— User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename,
int creat (const char *fj
int close (int file

int flags| [, mode t mode])
name, mode_t mode)

Bit vector of:

* Access modes (Rd,Wr, ...)

* Open Flags (Create,...)

* Operating modes (Appends, ...)

Bit vector of Permission Bits:
* User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

C Low Level: standard descriptors

#include <unistd.h>

STDIN_FILENO - macro has value ©
STDOUT_FILENO - macro has value 1
STDERR_FILENO - macro has value 2
int fileno (FILE *stream)

FILE * fdopen (int filedes, const char *opentype)

* Crossing levels: File descriptors vs. streams
 Don’t mix them!

C Low Level Operations

ssize t read (int filedes, void *buffer, size t maxsize)
- returns bytes read, @ => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off_t lseek (int filedes, off_t offset, int whence)

int fsync (int fildes) - wait for i/o to finish
void sync (void) - wait for ALL to finish

When write returns, data is on its way to disk and
can be read, but it may not actually be permanent!

And lots more |

TTYs versus files

Memory mapped files

File Locking

Asynchronous I/0O

Generic /O Control Operations

Duplicating descriptors

int dup2 (int old, int new)
int dup (int old)

#include
#include
#include
#include
#include

#define BUFSIZE 1024

Another example: lowio-std.c

<stdlib.h>
<stdio.h>

<string.h>
<unistd.h>

<sys/types.h>

int main(int argc, char *argv[])

{

char buf[BUFSIZE];
ssize t writelen

ssize t readlen

ssize t strlen

write(STDOUT_FILENO, "I am a process.\n", 16);
read(STDIN_FILENO, buf, BUFSIZE);

snprintf(buf, BUFSIZE,"Got %zd chars\n", readlen);

writelen = strlen < BUFSIZE ? strlen : BUFSIZE;
write(STDOUT _FILENO, buf, writelen);

exit(9);

What’s below the surface ??

Application / Service

High Level I/O streams
Low Level I/O handles
ﬁ Syscall registers
File System descriptors
/O Driver Commands and Data Transfers

L] il—@ Disks, Flash, Controllers, DMA

North,

Voica Coil___ 4 —x
— / SRo =

Recall: SYSCALL

m BCal [ia UCB [La] cs162 [l cullermayeno W Wikipedia Yahoo! [| News [| Popular ™| Imported From Safari

C' | syscalls.kernelgrok.com

Linux Syscall Reference

Show | 10 ¢ | entries Search:
Registers
a Name Definition
eax ebx ecx edx esi edi
0 sys_restart_syscall 0x00 - - - - - kernel/signal.c:2058
1 sys_exit 0x01 int error_code - - - - kernel/exit.c:1046
2 sys_fork 0x02 struct pt_regs * - - - - arch/alpha/kernel/entry.S:716
3 sys_read 0x03 unsigned int fd char __user *buf size_t count - - fs/read_write.c:391
4 sys_write 0x04 unsigned int fd const char __user size_t count - - fs/read_write.c:408
*buf
5 sys_open 0x05 const char __user int flags int mode - - fs/open.c:900
*filename
sys_close 0x06 unsigned int fd - - - - fs/open.c:969
7 sys_waitpid 0x07 pid_t pid int __user int options - - kernel/exit.c:1771
*stat_addr
8 sys_creat 0x08 const char __user int mode - - - fs/open.c:933
*pathname
9 sys_link 0x09 const char __user const char __user - - - fs/namei.c:2520
*oldname *newname
Showing 1 to 10 of 338 entries 2 3 4 5 Next Last

Generated from Linux kernel 2.6.35.4 using Exuberant Ctags, Python, and DataTables.
Project on GitHub. Hosted on GitHub Pages.

* Low level lib parameters are set up in registers and
syscall instruction is issued

— A type of synchronous exception that enters well-defined entry
points into kernel

What’s below the surface ??

Application / Service

ile descriptor number
- anint

~ High Level I/O
Level I/O
Syscall
/F'vl/e System
- a struct with all the II/ O IDriver
info about the files [] |

streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

\ >
Voica 1.0|!_\
nt Magnet. =

Internal OS File Descriptor

* Internal Data Structure describing everything about the

file

— Where it resides
— Its status

— How to access it

Pointer:
struct file *file

C [Ixr.free-electrons.com/source/include/linux/fs.h#L747

>s [HlBcal [uce [csi62 [cullermayeno W Wikipedia | Yahoo! [News [
746
747 struct file {
748 union {
749 struct llist_node fu_llist;
750 struct rcu_head fu_rcuhead;
751 } f_u;
752 struct path f_path;
753 #define f_dentry f_path.dentry
754 struct inode *f_inode; /* cacl
755 const struct file_operations *f_op;
756
757 /*
758 * Protects f_ep_links, f_flags.
759 * Must not be taken from IRQ context.
760 */
761 spinlock_t f_lock;
762 atomic_long_t f_count;
763 unsigned int f_flags;
764 fmode_t f_mode;
765 struct mutex f_pos_lock;
766 loff_t f_pos;
767 struct fown_struct f_owner;
768 const struct cred *f_cred;
769 struct file_ra_state f_ra;
770
771 ub4 f_version;
772 #ifdef CONFIG_SECURITY
773 void *f_security;
774 #endif
775 /* needed for tty driver, and maybe others */
776 void *private_data;
777
778 #ifdef CONFIG_EPOLL
779 /* Used by fs/eventpoll.c to link all the hook:
780 struct list_head f_ep_links;
781 struct list_head f_tfile_1llink;
782 #endif /* #ifdef CONFIG_EPOLL */
783 struct address_space *f_mapping;
784 } __attribute__(Caligned(4))); /* lest something weir:

—ar

File System: from syscall to driver
In fs/read _write.c

ssize t vfs _read(struct file *file, char __ user *buf, size t count, loff t *pos)
{
ssize t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely('access ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f op->read)
ret = file->f _op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 9) {
fsnotify access(file->f_path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);
}

return ret;

}

Lower Level Driver

* Associated with particular hardware device
* Registers / Unregisters itself with the kernel
 Handler functions for each of the file operations

Recall: Device Drivers

e Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware

— Supports a standard, internal interface
— Same kernel I/O system can interact easily with different device drivers

— Special device-specific configuration supported with the 1ioctl () system
call

* Device Drivers typically divided into two pieces:

— Top half: accessed in call path from system calls

* implements a set of standard, cross-device calls like open (),
close (), read (), write(), 1octl (), strategy ()

* This is the kernel’s interface to the device driver

* Top half will start |/O to device, may put thread to sleep until finished
— Bottom half: run as interrupt routine

* Gets input or transfers next block of output

* May wake sleeping threads if I/O now complete

Life Cycle of An 1/O Request

User
Program

Kernel I/O
Subsystem

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

request 1/O

system call

can already

user
process

kernel
IO subsystem

/O completed,
input data available, or
output completed

return from system call

IIIIIIIIIIIIIIIIIIIIIlllllllllllrlllllllll

transfer data
(if appropriate) to process,

satisfy request? yes

no

send request to device
driver, block process if
appropriate

process request, issue

commands to controller,
configure controller to
block until interrupted

device-controller commands

kernel
I/0 subsystem

device
driver

interrupt
handler

return completion
or error code

4

determine which /O
completed, indicate state
change to I/0 subsystem

A

receive interrupt, store
data in device-driver buffer
if input, signal to unblock
device driver

1

..............................‘WFW.......

I/O completed,

generate interrupt

device
monitor device, controller
interrupt when 1/O 2
completed
time

)

So what happens when you fgetc?

Application / Service

High Level I1/O streams
Low Level I/O handles
Syscal registers
File System descriptors
/O Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

Communication between processes
e Can we view files as communication channels?

write(wfd, wbuf, wlen);

n = read(rfd,rbuf,rmax);

* Producer and Consumer of a file may be distinct processes
— May be separated in time (or not)

e However, what if data written once and consumed once”

— Don’t we want something more like a queue?
— Can still look like File 1/0!

Communication Across the world looks
like file 10

write(wfd, wbuf, wlen);

n = read(rfd,rbuf,rmax);

* Connected queues over the Internet
— But what’s the analog of open?
— What is the namespace?
— How are they connected in time?

Request Response Protocol

Client (issues requests) Server (performs operations)

write(rqgfd, rgbuf, buflen);

‘>
. requests —
\
' n = read(rfd,rbuf,rmax);
/
/4
. 4 .
wait , service request
1
\ write(wfd, respbuf, len);
|
v /

p— responses

n = read(resfd,resbuf,resmax);

Request Response Protocol

Client (issues requests) Server (performs operations)
write(rqgfd, rgbuf, buflen);

requests [Y e

\ n = read(rfd,rbuf,rmax);
/I
wait | service request
\
\ N \\ write(wfd, respbuf, len);
l
' responses -
|

= \
n = read(resfd,resbd;j;;§m3§<:V/

Client-Server Models

{ Client n

* File servers, web, FTP, Databases, ...
 Many clients accessing a common server

Conclusion (I)

System Call Interface is “narrow waist” between user
programs and kernel

Streaming 10: modeled as a stream of bytes
— Most streaming 1/O functions start with “f” (like “fread”)
— Data buffered automatically by C-library functions

Low-level 1/0:
— File descriptors are integers
— Low-level I/O supported directly at system call level

STDIN / STDOUT enable composition in Unix

— Use of pipe symbols connects STDOUT and STDIN
e find | grep | wc ..

Conclusion (lI)

* Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
— Supports a standard, internal interface

— Same kernel I/O system can interact easily with different
device drivers

* File abstraction works for inter-processes
communication (local or Internet)

