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Assignment	#1	-	Clarifica)ons	
•  Grading	
–  5%	-	Design	
–  10%	-	Implementa)on/tests	

•  Git	
– Working	with	github	to	set	up	repos	
–  Should	be	up	by	early	next	week	

•  Details	of	scheduling	
–  In	coming	classes	and	recita)ons	
–  Assignment	given	early	

•  Deadlines	
–  9/26	–	Design	document	
–  10/3	–	Implementa)on	via	Autograder	



Recall:	UNIX	System	Structure	

User Mode

Kernel Mode

Hardware

Applications

Standard Libs



How	Does	the	Kernel	Provide	Services?	

•  You	said	that	applica)ons	request	services	from	the	
opera)ng	system	via	syscall,	but	…	

•  I’ve	been	wri)ng	all	sort	of	useful	applica)ons	and	I	
never	ever	saw	a	“syscall”	!!!	

•  That’s	right.			
•  It	was	buried	in	the	programming	language	run)me	
library	(e.g.,	libc.a)	

•  …	Layering	
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A	Kind	of	Narrow	Waist	

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call 
Interface

Portable OS Kernel

Platform support,  Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service



Key	Unix	I/O	Design	Concepts	
•  Uniformity	
–  file	opera)ons,	device	I/O,	and	interprocess	
communica)on	through	open,	read/write,	close	

–  Allows	simple	composi)on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra)on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	
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Key	Unix	I/O	Design	Concepts	
•  Uniformity	

–  file	opera)ons,	device	I/O,	and	interprocess	communica)on	
through	open,	read/write,	close	

–  Allows	simple	composi)on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra)on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	

•  Kernel	buffered	writes	
–  Comple)on	of	out-going	transfer	decoupled	from	the	
applica)on,	allowing	it	to	con)nue	
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Key	Unix	I/O	Design	Concepts	
•  Uniformity	

–  file	opera)ons,	device	I/O,	and	interprocess	communica)on	
through	open,	read/write,	close	

–  Allows	simple	composi)on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra)on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	

•  Kernel	buffered	writes	
–  Comple)on	of	out-going	transfer	decoupled	from	the	applica)on,	

allowing	it	to	con)nue	
•  Explicit	close	
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The	File	System	Abstrac)on	
•  High-level	idea	

–  Files	live	in	hierarchical	namespace	of	filenames	
•  File	

–  Named	collec)on	of	data	in	a	file	system	
–  File	data	

•  Text,	binary,	linearized	objects	
–  File	Metadata:	informa)on	about	the	file	

•  Size,	Modifica)on	Time,	Owner,	Security	info	
•  Basis	for	access	control	

•  Directory	
–  “Folder”	containing	files	&	Directories	
–  Hierachical	(graphical)	naming	

•  Path	through	the	directory	graph	
•  Uniquely	iden)fies	a	file	or	directory	

–  /home/ff/cs162/public_html/fa17/index.html	
–  Links	and	Volumes	(later)	



C	High-Level	File	API	–	Streams	
(review)	

•  Operate	on	“streams”	-	sequence	of	bytes,	whether	
text	or	data,	with	a	posi)on	

#include	<stdio.h>	
FILE	*fopen(	const	char	*filename,	const	char	*mode	);	
int	fclose(	FILE	*fp	);	

Mode Text Binary Descriptions

r rb Open existing file for reading
w wb Open for writing; created if does not exist
a ab Open for appending; created if does not exist
r+ rb+ Open existing file for reading & writing.
w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, 

write as append



Connec)ng	Processes,	Filesystem,	and	
Users	

•  Process	has	a	‘current	working	directory’	

•  Absolute	Paths	
–  /home/kdantu/cs421	

•  Rela)ve	paths	
–  index.html,	./index.html			-	current	WD	
–  ../index.html		-	parent	of	current	WD	
–  ~,	~kdantu		-	home	directory	



C	API	Standard	Streams	
•  Three	predefined	streams	are	opened	implicitly	when	a	
program	is	executed	
–  FILE	*stdin	–	normal	source	of	input,	can	be	redirected	
–  FILE	*stdout	–	normal	source	of	output,	can	be	redirected	
–  FILE	*stderr	–	diagnos)cs	and	errors,	can	be	redirected	

•  STDIN	/	STDOUT	enable	composi)on	in	Unix	
–  Recall:	Use	of	pipe	symbols	connects	STDOUT	and	STDIN	

•  find	|	grep	|	wc	… 



C	high	level	File	API	–	Stream	Ops	
#include	<stdio.h>	
//	character	oriented			
int	fputc(	int	c,	FILE	*fp	);										//	rtn	c	or	EOF	on	err	
int	fputs(	const	char	*s,	FILE	*fp	);		//	rtn	>0	or	EOF	
	
int	fgetc(	FILE	*	fp	);		
char	*fgets(	char	*buf,	int	n,	FILE	*fp	);	



#include	<stdio.h>	
//	character	oriented			
int	fputc(	int	c,	FILE	*fp	);										//	rtn	c	or	EOF	on	err	
int	fputs(	const	char	*s,	FILE	*fp	);		//	rtn	>0	or	EOF	
	
int	fgetc(	FILE	*	fp	);	
char	*fgets(	char	*buf,	int	n,	FILE	*fp	);	
	
//	block	oriented	
size_t	fread(void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
															
size_t	fwrite(const	void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
	

C	high	level	File	API	–	Stream	Ops	



C	high	level	File	API	–	Stream	Ops	
#include	<stdio.h>	
//	character	oriented			
int	fputc(	int	c,	FILE	*fp	);	 	//	rtn	c	or	EOF	on	err	
int	fputs(	const	char	*s,	FILE	*fp	); 	//	rtn	>0	or	EOF	
	
int	fgetc(	FILE	*	fp	);	
char	*fgets(	char	*buf,	int	n,	FILE	*fp	);	
	
//	block	oriented	
size_t	fread(void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
															
size_t	fwrite(const	void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
	
//	formatted	
int	fprintf(FILE	*restrict	stream,	const	char	*restrict	format,	

	 	...);	
int	fscanf(FILE	*restrict	stream,	const	char	*restrict	format,	

	 	...);	



Example	Code	
#include	<stdio.h>	
	

#define	BUFLEN	256	
FILE	*outfile;	
char	mybuf[BUFLEN];	
	

int	storetofile()	{	
		char	*instring;	
	
		outfile	=	fopen("/usr/homes/testing/tokens",	"w+");	
		if	(!outfile)	
				return	(-1);				//	Error!	
		while	(1)	{	
				instring	=	fgets(mybuf,	BUFLEN,	stdin);	//	catches	overrun!	
	
				//	Check	for	error	or	end	of	file	(^D)	
				if	(!instring	||	strlen(instring)==0)	break;	
	
				//	Write	string	to	output	file,	exit	on	error	
				if	(fputs(instring,	outfile)<	0)	break;		
		}		
		fclose(outfile);		//	Flushes	from	userspace	
}	



C	Stream	API	posi)oning	

•  Preserves	high	level	abstrac)on	of	uniform	stream	of	objects	
•  Adds	buffering	for	performance	

int	fseek(FILE	*stream,	long	int	offset,	int	whence);	
long	int	ftell	(FILE	*stream)	
void	rewind	(FILE	*stream)	 High%Level%I/O%%

Low%Level%I/O%%
Syscall%

File%System%

Upper%I/O%Driver%

Lower%I/O%Driver%

offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)
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C	Low	level	I/O	
•  Opera)ons	on	File	Descriptors	–	as	OS	object	
represen)ng	the	state	of	a	file	
–  User	has	a	“handle”	on	the	descriptor		

#include	<fcntl.h>	
#include	<unistd.h>	
#include	<sys/types.h>	
	
int	open	(const	char	*filename,	int	flags	[,	mode_t	mode])	
int	creat	(const	char	*filename,	mode_t	mode)	
int	close	(int	filedes)	

Bit vector of:
•  Access modes (Rd, Wr, …)
•  Open Flags (Create, …)
•  Operating modes (Appends, …)

Bit vector of Permission Bits:
•  User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html



C	Low	Level:	standard	descriptors	

•  Crossing	levels:	File	descriptors	vs.	streams	
•  Don’t	mix	them!	

#include	<unistd.h>	
	
STDIN_FILENO	-		macro	has	value	0	
STDOUT_FILENO	-	macro	has	value	1	
STDERR_FILENO	-	macro	has	value	2	
	
int	fileno	(FILE	*stream)	
	
FILE	*	fdopen	(int	filedes,	const	char	*opentype)	
	



C	Low	Level	Opera)ons	

•  When	write	returns,	data	is	on	its	way	to	disk	and	
can	be	read,	but	it	may	not	actually	be	permanent!	

ssize_t	read	(int	filedes,	void	*buffer,	size_t	maxsize)	
	-	returns	bytes	read,	0	=>	EOF,	-1	=>	error	
ssize_t	write	(int	filedes,	const	void	*buffer,	size_t	size)	
	-	returns	bytes	written	
	
off_t	lseek	(int	filedes,	off_t	offset,	int	whence)	
	
int	fsync	(int	fildes)	–	wait	for	i/o	to	finish	
void	sync	(void)	–	wait	for	ALL	to	finish	



And	lots	more	!	
•  TTYs	versus	files	
•  Memory	mapped	files	
•  File	Locking	
•  Asynchronous	I/O	
•  Generic	I/O	Control	Opera)ons	
•  Duplica)ng	descriptors	

int	dup2	(int	old,	int	new)	
int	dup	(int	old)	



Another	example:	lowio-std.c	
#include	<stdlib.h>	
#include	<stdio.h>	
#include	<string.h>	
#include	<unistd.h>	
#include	<sys/types.h>	
	
#define	BUFSIZE	1024	
	
int	main(int	argc,	char	*argv[])	
{	
		char	buf[BUFSIZE];	
		ssize_t	writelen	=	write(STDOUT_FILENO,	"I	am	a	process.\n",	16);	
	
		ssize_t	readlen		=	read(STDIN_FILENO,	buf,	BUFSIZE);	
	
		ssize_t	strlen			=	snprintf(buf,	BUFSIZE,"Got	%zd	chars\n",	readlen);	
	
		writelen	=	strlen	<	BUFSIZE	?	strlen	:	BUFSIZE;	
		write(STDOUT_FILENO,	buf,	writelen);	
	
		exit(0);	
}	
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Recall:	SYSCALL	

•  Low	level	lib	parameters	are	set	up	in	registers	and	
syscall	instruc)on	is	issued	
–  A	type	of	synchronous	excep)on	that	enters	well-defined	entry	
points	into	kernel	
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Internal	OS	File	Descriptor	
•  Internal	Data	Structure	describing	everything	about	the	

file	
–  Where	it	resides	
–  Its	status	
–  How	to	access	it	

•  Pointer:		
struct	file	*file			



File	System:	from	syscall	to	driver	

ssize_t	vfs_read(struct	file	*file,	char	__user	*buf,	size_t	count,	loff_t	*pos)	
{	
		ssize_t	ret;	
		if	(!(file->f_mode	&	FMODE_READ))	return	-EBADF;	
		if	(!file->f_op	||	(!file->f_op->read	&&	!file->f_op->aio_read))	
				return	-EINVAL;	
		if	(unlikely(!access_ok(VERIFY_WRITE,	buf,	count)))	return	-EFAULT;	
		ret	=	rw_verify_area(READ,	file,	pos,	count);	
		if	(ret	>=	0)	{	
				count	=	ret;	
				if	(file->f_op->read)	
						ret	=	file->f_op->read(file,	buf,	count,	pos);	
				else	
						ret	=	do_sync_read(file,	buf,	count,	pos);	
				if	(ret	>	0)	{	
						fsnotify_access(file->f_path.dentry);	
						add_rchar(current,	ret);	
				}	
				inc_syscr(current);	
		}	
		return	ret;	
}	

In fs/read_write.c	



Lower	Level	Driver	
•  Associated	with	par)cular	hardware	device	
•  Registers	/	Unregisters	itself	with	the	kernel	
•  Handler	func)ons	for	each	of	the	file	opera)ons	



Recall:	Device	Drivers	
•  Device	Driver:	Device-specific	code	in	the	kernel	that	
interacts	directly	with	the	device	hardware	
–  Supports	a	standard,	internal	interface	
–  Same	kernel	I/O	system	can	interact	easily	with	different	device	drivers	
–  Special	device-specific	configura)on	supported	with	the	ioctl()	system	

call	

•  Device	Drivers	typically	divided	into	two	pieces:	
–  Top	half:	accessed	in	call	path	from	system	calls	

•  implements	a	set	of	standard,	cross-device	calls	like	open(), 
close(), read(), write(), ioctl(), strategy() 

•  This	is	the	kernel’s	interface	to	the	device	driver	
•  Top	half	will	start	I/O	to	device,	may	put	thread	to	sleep	un)l	finished	

–  Boqom	half:	run	as	interrupt	rou)ne	
•  Gets	input	or	transfers	next	block	of	output	
•  May	wake	sleeping	threads	if	I/O	now	complete	



Life	Cycle	of	An	I/O	Request	
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So	what	happens	when	you	fgetc?	
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Communica)on	between	processes	
•  Can	we	view	files	as	communica)on	channels?	

•  Producer	and	Consumer	of	a	file	may	be	dis)nct	processes	
– May	be	separated	in	)me	(or	not)	

•  However,	what	if	data	wriqen	once	and	consumed	once?			
–  Don’t	we	want	something	more	like	a	queue?	
–  Can	s)ll	look	like	File	I/O!	

write(wfd,	wbuf,	wlen);		

n	=	read(rfd,rbuf,rmax);		



Communica)on	Across	the	world	looks	
like	file	IO		

•  Connected	queues	over	the	Internet	
–  But	what’s	the	analog	of	open?	
– What	is	the	namespace?	
–  How	are	they	connected	in	)me?	

write(wfd,	wbuf,	wlen);		

n	=	read(rfd,rbuf,rmax);		



Request	Response	Protocol	

write(rqfd,	rqbuf,	buflen);		

n	=	read(rfd,rbuf,rmax);		

Client (issues requests) Server (performs operations)

requests

responses

write(wfd,	respbuf,	len);		

n	=	read(resfd,resbuf,resmax);		

service requestwait



Request	Response	Protocol	

write(rqfd,	rqbuf,	buflen);		

n	=	read(rfd,rbuf,rmax);		

Client (issues requests) Server (performs operations)

write(wfd,	respbuf,	len);		

n	=	read(resfd,resbuf,resmax);		

service requestwait

requests

responses



Client-Server	Models	

•  File	servers,	web,	FTP,	Databases,	…	
•  Many	clients	accessing	a	common	server	

Server

Client 1

Client 2

Client n

***



Conclusion	(I)	
•  System	Call	Interface	is	“narrow	waist”	between	user	
programs	and	kernel	

•  Streaming	IO:	modeled	as	a	stream	of	bytes	
– Most	streaming	I/O	func)ons	start	with	“f”	(like	“fread”)	
–  Data	buffered	automa)cally	by	C-library	func)ons	

•  Low-level	I/O:		
–  File	descriptors	are	integers	
–  Low-level	I/O	supported	directly	at	system	call	level	

•  STDIN	/	STDOUT	enable	composi)on	in	Unix	
–  Use	of	pipe	symbols	connects	STDOUT	and	STDIN	

•  find	|	grep	|	wc	…	



Conclusion	(II)	
•  Device	Driver:	Device-specific	code	in	the	kernel	that	
interacts	directly	with	the	device	hardware	
–  Supports	a	standard,	internal	interface	
–  Same	kernel	I/O	system	can	interact	easily	with	different	
device	drivers	

•  File	abstrac)on	works	for	inter-processes	
communica)on	(local	or	Internet)	


