
Introduc)on	to	I/O	

CSE	421/521:	Opera)ng	Systems	
Karthik	Dantu	

Slides	adopted	from	CS162	class	at	Berkeley,	CSE	451	at	U-Washington	and	CSE	421	by	Prof	Kosar	at	UB	

Assignment	#1	-	Clarifica)ons	
•  Grading	
–  5%	-	Design	
–  10%	-	Implementa)on/tests	

•  Git	
– Working	with	github	to	set	up	repos	
–  Should	be	up	by	early	next	week	

•  Details	of	scheduling	
–  In	coming	classes	and	recita)ons	
–  Assignment	given	early	

•  Deadlines	
–  9/26	–	Design	document	
–  10/3	–	Implementa)on	via	Autograder	

Recall:	UNIX	System	Structure	

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

How	Does	the	Kernel	Provide	Services?	

•  You	said	that	applica)ons	request	services	from	the	
opera)ng	system	via	syscall,	but	…	

•  I’ve	been	wri)ng	all	sort	of	useful	applica)ons	and	I	
never	ever	saw	a	“syscall”	!!!	

•  That’s	right.			
•  It	was	buried	in	the	programming	language	run)me	
library	(e.g.,	libc.a)	

•  …	Layering	

OS	Run-Time	Library	

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window
Manager

…
OS library OS library OS library

A	Kind	of	Narrow	Waist	

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

Key	Unix	I/O	Design	Concepts	
•  Uniformity	
–  file	opera)ons,	device	I/O,	and	interprocess	
communica)on	through	open,	read/write,	close	

–  Allows	simple	composi)on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra)on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	

Puhng	it	together:	web	server	

Server

Kernel

Hardware

request
buffer

reply
buffer

11. kernel copy
 from user buffer
 to network buffer

Network
interface Disk interface

12. format outgoing
 packet and DMA

6. disk
 request

10. network
 socket
 write

1. network
 socket
 read

2. copy arriving
 packet (DMA)

syscall

wait

interrupt

3. kernel
 copy

RTU

5. file
 readsyscall

8. kernel
 copy

RTU

7. disk data
 (DMA)

interrupt

4. parse request 9. format reply

Request Reply

Kernel buffer
reads

Key	Unix	I/O	Design	Concepts	
•  Uniformity	

–  file	opera)ons,	device	I/O,	and	interprocess	communica)on	
through	open,	read/write,	close	

–  Allows	simple	composi)on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra)on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	

•  Kernel	buffered	writes	
–  Comple)on	of	out-going	transfer	decoupled	from	the	
applica)on,	allowing	it	to	con)nue	

Puhng	it	together:	web	server	

Server

Kernel

Hardware

request
buffer

reply
buffer

11. kernel copy
 from user buffer
 to network buffer

Network
interface Disk interface

12. format outgoing
 packet and DMA

6. disk
 request

10. network
 socket
 write

1. network
 socket
 read

2. copy arriving
 packet (DMA)

syscall

wait

interrupt

3. kernel
 copy

RTU

5. file
 readsyscall

8. kernel
 copy

RTU

7. disk data
 (DMA)

interrupt

4. parse request 9. format reply

Request Reply

Kernel buffer
writes

Key	Unix	I/O	Design	Concepts	
•  Uniformity	

–  file	opera)ons,	device	I/O,	and	interprocess	communica)on	
through	open,	read/write,	close	

–  Allows	simple	composi)on	of	programs		
•  find	|	grep	|	wc	…	

•  Open	before	use	
–  Provides	opportunity	for	access	control	and	arbitra)on	
–  Sets	up	the	underlying	machinery,	i.e.,	data	structures	

•  Byte-oriented	
–  Even	if	blocks	are	transferred,	addressing	is	in	bytes	

•  Kernel	buffered	reads	
–  Streaming	and	block	devices	looks	the	same	
–  read	blocks	process,	yielding	processor	to	other	task	

•  Kernel	buffered	writes	
–  Comple)on	of	out-going	transfer	decoupled	from	the	applica)on,	

allowing	it	to	con)nue	
•  Explicit	close	

I/O	&	Storage	Layers	

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

The	File	System	Abstrac)on	
•  High-level	idea	

–  Files	live	in	hierarchical	namespace	of	filenames	
•  File	

–  Named	collec)on	of	data	in	a	file	system	
–  File	data	

•  Text,	binary,	linearized	objects	
–  File	Metadata:	informa)on	about	the	file	

•  Size,	Modifica)on	Time,	Owner,	Security	info	
•  Basis	for	access	control	

•  Directory	
–  “Folder”	containing	files	&	Directories	
–  Hierachical	(graphical)	naming	

•  Path	through	the	directory	graph	
•  Uniquely	iden)fies	a	file	or	directory	

–  /home/ff/cs162/public_html/fa17/index.html	
–  Links	and	Volumes	(later)	

C	High-Level	File	API	–	Streams	
(review)	

•  Operate	on	“streams”	-	sequence	of	bytes,	whether	
text	or	data,	with	a	posi)on	

#include	<stdio.h>	
FILE	*fopen(const	char	*filename,	const	char	*mode);	
int	fclose(FILE	*fp);	

Mode Text Binary Descriptions

r rb Open existing file for reading
w wb Open for writing; created if does not exist
a ab Open for appending; created if does not exist
r+ rb+ Open existing file for reading & writing.
w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning,

write as append

Connec)ng	Processes,	Filesystem,	and	
Users	

•  Process	has	a	‘current	working	directory’	

•  Absolute	Paths	
–  /home/kdantu/cs421	

•  Rela)ve	paths	
–  index.html,	./index.html			-	current	WD	
–  ../index.html		-	parent	of	current	WD	
–  ~,	~kdantu		-	home	directory	

C	API	Standard	Streams	
•  Three	predefined	streams	are	opened	implicitly	when	a	
program	is	executed	
–  FILE	*stdin	–	normal	source	of	input,	can	be	redirected	
–  FILE	*stdout	–	normal	source	of	output,	can	be	redirected	
–  FILE	*stderr	–	diagnos)cs	and	errors,	can	be	redirected	

•  STDIN	/	STDOUT	enable	composi)on	in	Unix	
–  Recall:	Use	of	pipe	symbols	connects	STDOUT	and	STDIN	

•  find	|	grep	|	wc	…

C	high	level	File	API	–	Stream	Ops	
#include	<stdio.h>	
//	character	oriented			
int	fputc(int	c,	FILE	*fp);										//	rtn	c	or	EOF	on	err	
int	fputs(const	char	*s,	FILE	*fp);		//	rtn	>0	or	EOF	
	
int	fgetc(FILE	*	fp);		
char	*fgets(char	*buf,	int	n,	FILE	*fp);	

#include	<stdio.h>	
//	character	oriented			
int	fputc(int	c,	FILE	*fp);										//	rtn	c	or	EOF	on	err	
int	fputs(const	char	*s,	FILE	*fp);		//	rtn	>0	or	EOF	
	
int	fgetc(FILE	*	fp);	
char	*fgets(char	*buf,	int	n,	FILE	*fp);	
	
//	block	oriented	
size_t	fread(void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
															
size_t	fwrite(const	void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
	

C	high	level	File	API	–	Stream	Ops	

C	high	level	File	API	–	Stream	Ops	
#include	<stdio.h>	
//	character	oriented			
int	fputc(int	c,	FILE	*fp);	 	//	rtn	c	or	EOF	on	err	
int	fputs(const	char	*s,	FILE	*fp); 	//	rtn	>0	or	EOF	
	
int	fgetc(FILE	*	fp);	
char	*fgets(char	*buf,	int	n,	FILE	*fp);	
	
//	block	oriented	
size_t	fread(void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
															
size_t	fwrite(const	void	*ptr,	size_t	size_of_elements,		
													size_t	number_of_elements,	FILE	*a_file);	
	
//	formatted	
int	fprintf(FILE	*restrict	stream,	const	char	*restrict	format,	

	 	...);	
int	fscanf(FILE	*restrict	stream,	const	char	*restrict	format,	

	 	...);	

Example	Code	
#include	<stdio.h>	
	

#define	BUFLEN	256	
FILE	*outfile;	
char	mybuf[BUFLEN];	
	

int	storetofile()	{	
		char	*instring;	
	
		outfile	=	fopen("/usr/homes/testing/tokens",	"w+");	
		if	(!outfile)	
				return	(-1);				//	Error!	
		while	(1)	{	
				instring	=	fgets(mybuf,	BUFLEN,	stdin);	//	catches	overrun!	
	
				//	Check	for	error	or	end	of	file	(^D)	
				if	(!instring	||	strlen(instring)==0)	break;	
	
				//	Write	string	to	output	file,	exit	on	error	
				if	(fputs(instring,	outfile)<	0)	break;		
		}		
		fclose(outfile);		//	Flushes	from	userspace	
}	

C	Stream	API	posi)oning	

•  Preserves	high	level	abstrac)on	of	uniform	stream	of	objects	
•  Adds	buffering	for	performance	

int	fseek(FILE	*stream,	long	int	offset,	int	whence);	
long	int	ftell	(FILE	*stream)	
void	rewind	(FILE	*stream)	 High%Level%I/O%%

Low%Level%I/O%%
Syscall%

File%System%

Upper%I/O%Driver%

Lower%I/O%Driver%

offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)

What’s	below	the	surface	??	
Application / Service

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

streams
handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

C	Low	level	I/O	
•  Opera)ons	on	File	Descriptors	–	as	OS	object	
represen)ng	the	state	of	a	file	
–  User	has	a	“handle”	on	the	descriptor		

#include	<fcntl.h>	
#include	<unistd.h>	
#include	<sys/types.h>	
	
int	open	(const	char	*filename,	int	flags	[,	mode_t	mode])	
int	creat	(const	char	*filename,	mode_t	mode)	
int	close	(int	filedes)	

Bit vector of:
•  Access modes (Rd, Wr, …)
•  Open Flags (Create, …)
•  Operating modes (Appends, …)

Bit vector of Permission Bits:
•  User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

C	Low	Level:	standard	descriptors	

•  Crossing	levels:	File	descriptors	vs.	streams	
•  Don’t	mix	them!	

#include	<unistd.h>	
	
STDIN_FILENO	-		macro	has	value	0	
STDOUT_FILENO	-	macro	has	value	1	
STDERR_FILENO	-	macro	has	value	2	
	
int	fileno	(FILE	*stream)	
	
FILE	*	fdopen	(int	filedes,	const	char	*opentype)	
	

C	Low	Level	Opera)ons	

•  When	write	returns,	data	is	on	its	way	to	disk	and	
can	be	read,	but	it	may	not	actually	be	permanent!	

ssize_t	read	(int	filedes,	void	*buffer,	size_t	maxsize)	
	-	returns	bytes	read,	0	=>	EOF,	-1	=>	error	
ssize_t	write	(int	filedes,	const	void	*buffer,	size_t	size)	
	-	returns	bytes	written	
	
off_t	lseek	(int	filedes,	off_t	offset,	int	whence)	
	
int	fsync	(int	fildes)	–	wait	for	i/o	to	finish	
void	sync	(void)	–	wait	for	ALL	to	finish	

And	lots	more	!	
•  TTYs	versus	files	
•  Memory	mapped	files	
•  File	Locking	
•  Asynchronous	I/O	
•  Generic	I/O	Control	Opera)ons	
•  Duplica)ng	descriptors	

int	dup2	(int	old,	int	new)	
int	dup	(int	old)	

Another	example:	lowio-std.c	
#include	<stdlib.h>	
#include	<stdio.h>	
#include	<string.h>	
#include	<unistd.h>	
#include	<sys/types.h>	
	
#define	BUFSIZE	1024	
	
int	main(int	argc,	char	*argv[])	
{	
		char	buf[BUFSIZE];	
		ssize_t	writelen	=	write(STDOUT_FILENO,	"I	am	a	process.\n",	16);	
	
		ssize_t	readlen		=	read(STDIN_FILENO,	buf,	BUFSIZE);	
	
		ssize_t	strlen			=	snprintf(buf,	BUFSIZE,"Got	%zd	chars\n",	readlen);	
	
		writelen	=	strlen	<	BUFSIZE	?	strlen	:	BUFSIZE;	
		write(STDOUT_FILENO,	buf,	writelen);	
	
		exit(0);	
}	

What’s	below	the	surface	??	
Application / Service

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

streams
handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Recall:	SYSCALL	

•  Low	level	lib	parameters	are	set	up	in	registers	and	
syscall	instruc)on	is	issued	
–  A	type	of	synchronous	excep)on	that	enters	well-defined	entry	
points	into	kernel	

What’s	below	the	surface	??	

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

File descriptor number
 - an int

File Descriptors
 - a struct with all the
info about the files

Internal	OS	File	Descriptor	
•  Internal	Data	Structure	describing	everything	about	the	

file	
–  Where	it	resides	
–  Its	status	
–  How	to	access	it	

•  Pointer:		
struct	file	*file			

File	System:	from	syscall	to	driver	

ssize_t	vfs_read(struct	file	*file,	char	__user	*buf,	size_t	count,	loff_t	*pos)	
{	
		ssize_t	ret;	
		if	(!(file->f_mode	&	FMODE_READ))	return	-EBADF;	
		if	(!file->f_op	||	(!file->f_op->read	&&	!file->f_op->aio_read))	
				return	-EINVAL;	
		if	(unlikely(!access_ok(VERIFY_WRITE,	buf,	count)))	return	-EFAULT;	
		ret	=	rw_verify_area(READ,	file,	pos,	count);	
		if	(ret	>=	0)	{	
				count	=	ret;	
				if	(file->f_op->read)	
						ret	=	file->f_op->read(file,	buf,	count,	pos);	
				else	
						ret	=	do_sync_read(file,	buf,	count,	pos);	
				if	(ret	>	0)	{	
						fsnotify_access(file->f_path.dentry);	
						add_rchar(current,	ret);	
				}	
				inc_syscr(current);	
		}	
		return	ret;	
}	

In fs/read_write.c	

Lower	Level	Driver	
•  Associated	with	par)cular	hardware	device	
•  Registers	/	Unregisters	itself	with	the	kernel	
•  Handler	func)ons	for	each	of	the	file	opera)ons	

Recall:	Device	Drivers	
•  Device	Driver:	Device-specific	code	in	the	kernel	that	
interacts	directly	with	the	device	hardware	
–  Supports	a	standard,	internal	interface	
–  Same	kernel	I/O	system	can	interact	easily	with	different	device	drivers	
–  Special	device-specific	configura)on	supported	with	the	ioctl()	system	

call	

•  Device	Drivers	typically	divided	into	two	pieces:	
–  Top	half:	accessed	in	call	path	from	system	calls	

•  implements	a	set	of	standard,	cross-device	calls	like	open(),
close(), read(), write(), ioctl(), strategy()

•  This	is	the	kernel’s	interface	to	the	device	driver	
•  Top	half	will	start	I/O	to	device,	may	put	thread	to	sleep	un)l	finished	

–  Boqom	half:	run	as	interrupt	rou)ne	
•  Gets	input	or	transfers	next	block	of	output	
•  May	wake	sleeping	threads	if	I/O	now	complete	

Life	Cycle	of	An	I/O	Request	

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

So	what	happens	when	you	fgetc?	

High Level I/O

Low Level I/O
Syscall

File System

I/O Driver

Application / Service

streams
handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Communica)on	between	processes	
•  Can	we	view	files	as	communica)on	channels?	

•  Producer	and	Consumer	of	a	file	may	be	dis)nct	processes	
– May	be	separated	in)me	(or	not)	

•  However,	what	if	data	wriqen	once	and	consumed	once?			
–  Don’t	we	want	something	more	like	a	queue?	
–  Can	s)ll	look	like	File	I/O!	

write(wfd,	wbuf,	wlen);		

n	=	read(rfd,rbuf,rmax);		

Communica)on	Across	the	world	looks	
like	file	IO		

•  Connected	queues	over	the	Internet	
–  But	what’s	the	analog	of	open?	
– What	is	the	namespace?	
–  How	are	they	connected	in)me?	

write(wfd,	wbuf,	wlen);		

n	=	read(rfd,rbuf,rmax);		

Request	Response	Protocol	

write(rqfd,	rqbuf,	buflen);		

n	=	read(rfd,rbuf,rmax);		

Client (issues requests) Server (performs operations)

requests

responses

write(wfd,	respbuf,	len);		

n	=	read(resfd,resbuf,resmax);		

service requestwait

Request	Response	Protocol	

write(rqfd,	rqbuf,	buflen);		

n	=	read(rfd,rbuf,rmax);		

Client (issues requests) Server (performs operations)

write(wfd,	respbuf,	len);		

n	=	read(resfd,resbuf,resmax);		

service requestwait

requests

responses

Client-Server	Models	

•  File	servers,	web,	FTP,	Databases,	…	
•  Many	clients	accessing	a	common	server	

Server

Client 1

Client 2

Client n

Conclusion	(I)	
•  System	Call	Interface	is	“narrow	waist”	between	user	
programs	and	kernel	

•  Streaming	IO:	modeled	as	a	stream	of	bytes	
– Most	streaming	I/O	func)ons	start	with	“f”	(like	“fread”)	
–  Data	buffered	automa)cally	by	C-library	func)ons	

•  Low-level	I/O:		
–  File	descriptors	are	integers	
–  Low-level	I/O	supported	directly	at	system	call	level	

•  STDIN	/	STDOUT	enable	composi)on	in	Unix	
–  Use	of	pipe	symbols	connects	STDOUT	and	STDIN	

•  find	|	grep	|	wc	…	

Conclusion	(II)	
•  Device	Driver:	Device-specific	code	in	the	kernel	that	
interacts	directly	with	the	device	hardware	
–  Supports	a	standard,	internal	interface	
–  Same	kernel	I/O	system	can	interact	easily	with	different	
device	drivers	

•  File	abstrac)on	works	for	inter-processes	
communica)on	(local	or	Internet)	

