
‘-

1
Karthik Dantu

C – Structs and Dynamic Memory 
Allocation

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

Portions of this lecture are borrowed from the U-W CSE 333 course slides



‘-

2
Karthik DantuKarthik Dantu

• Some students used forbidden functions in lab
You will lose points for that portion of the lab exam
Pay attention to instructions

• Fix your SENS accounts
• PA1 due this weekend
• Lab 03 is on testing
• Repsect your Tas

Regardless of gender, ethnicity, major, what dorm they are in etc. 
Each of them was handpicked by us for a reason

Administrivia



‘-

3
Karthik DantuKarthik Dantu

• Which lines have errors?

Practice 
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5;
b[0] += 2;
c = b+3;
free(&(a[0]));
free(b);
free(b);
b[0] = 5;

return EXIT_SUCCESS;
}

1
2
3
4
5
6
7



‘-

5
Karthik DantuKarthik Dantu

• There are all sorts of 
ways to corrupt memory 
in C

Memory Corruption
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5;   // assign past the end of an array
b[0] += 2;  // assume malloc zeros out memory
c = b+3;    // mess up your pointer arithmetic
free(&(a[0]));  // free something not malloc'ed
free(b);
free(b);    // double-free the same block
b[0] = 5;   // use a freed pointer

// any many more!
return EXIT_SUCCESS;

}



‘-

6
Karthik DantuKarthik Dantu

• A memory leak occurs when code fails to deallocate dynamically-
allocated memory that is no longer used
e.g. forget to free malloc-ed block, lose/change pointer to malloc-ed block

• What happens: program’s VM footprint will keep growing
This might be OK for short-lived program, since all memory is deallocated 
when program ends
Usually has bad repercussions for long-lived programs

Might slow down over time (e.g. lead to VM thrashing)
Might exhaust all available memory and crash
Other programs might get starved of memory

Memory Leak



‘-

7
Karthik DantuKarthik Dantu

• Arrays require all elements to be of the same data type
• Many times, we want to group items of different types in a 

structure
• E.g., grade_roster = {Name (char *), UBID (int) , Active 

(bool) , Lab1 (float), PA0 (float), ..}
• struct: Derived data type composed of members that are 

basic or other derived data types

Derived Data Types



‘-

8
Karthik DantuKarthik Dantu

• A struct is a C datatype that contains a set of fields
Similar to a Java class, but with no methods or constructors
Useful for defining new structured types of data
Behave similarly to primitive variables

• Generic declaration:

Structured Data

struct tagname {
type1 name1;
...
typeN nameN;

};

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
float x, y;

};

// declare and initialize a 
// struct Point variable
struct Point origin = {0.0,0.0};



‘-

9
Karthik DantuKarthik Dantu

Declaring structs

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
float x, y;

};

// the following defines a new
// structured datatype called
// a "struct Point” and declares 
// a variable “origin” of type
// struct Point
struct Point {
float x, y;

} origin;

Just specify the struct 
(no space reserved)

specify the struct and 
declare a variable 
(space reserved)



‘-

10
Karthik DantuKarthik Dantu

• Use “.” to refer to a field in a struct
• Use “->” to refer to a field from a struct pointer

Dereferences pointer first, then accesses field

Using structs

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 0.0};  // p1 is stack allocated
struct Point* p1_ptr = &p1;

p1.x = 1.0;
p1_ptr->y = 2.0;  // equivalent to (*p1_ptr).y = 2.0;
return EXIT_SUCCESS;

}



‘-

11
Karthik DantuKarthik Dantu

• You can assign the value of a struct from a struct of the same type –
this copies the entire contents!

Copy by Assignment

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};a

printf("p1: {%f,%f}  p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
p2 = p1;
printf("p1: {%f,%f}  p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
return EXIT_SUCCESS;

}



‘-

12
Karthik DantuKarthik Dantu

• Generic format:  typedef type name;
• Allows you to define new data type names/synonyms

Both type and name are usable and refer to the same type
Be careful with pointers – * before name is part of type!

typedef

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {

superlong x;
superlong y;

} Point, *PointPtr;  // similar syntax to "int n, *p;"

Point origin = {0, 0};



‘-

13
Karthik DantuKarthik Dantu

• You can malloc and free structs, just like other data type
sizeof is particularly helpful here

Dynamically-allocated Structs

// a complex number is a + bi
typedef struct complex_st {

double real;   // real component
double imag;   // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex(double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof(Complex));
if (retval != NULL) {

retval->real = real;
retval->imag = imag;

}
return retval;

}



‘-

14
Karthik DantuKarthik Dantu

• In most languages, arguments can 
be
Passed by value
Passed by reference

• C uses pass-by-value
• Example

Aside: Arguments in C

void swap(int a, int b) {
int tmp = a;
a = b;
b = tmp;

}

int main() {
int a = 1;
int b = 2;

printf(“a before swap=%d\n”,a);
printf(“b before swap=%d\n”,b);
swap(a,b);
printf(“a after swap=%d\n”,a);
printf(“b after swap=%d\n”,b);

return 0;
}

before swap a = 1 
before swap b = 2 
after swap a = 1 
after swap b = 2

https://denniskubes.com/2012/08/20/is-c-pass-by-value-or-reference/

https://denniskubes.com/2012/08/20/is-c-pass-by-value-or-reference/


‘-

15
Karthik DantuKarthik Dantu

• FIX: pass a pointer to the variables

Aside: Arguments in C

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

int main() {
int a = 1;
int b = 2;

printf(“a before swap=%d\n”,a);
printf(“b before swap=%d\n”,b);
swap(&a,&b);
printf(“a after swap=%d\n”,a);
printf(“b after swap=%d\n”,b);

return 0;
}

before swap a = 1 
before swap b = 2 
after swap a = 2 
after swap b = 1

https://denniskubes.com/2012/08/20/is-c-pass-by-value-or-reference/

https://denniskubes.com/2012/08/20/is-c-pass-by-value-or-reference/


‘-

16
Karthik DantuKarthik Dantu

• Structs are passed by value, like everything else in C
Entire struct is copied 
To manipulate a struct argument, pass a pointer instead

Structs as Arguments

typedef struct point_st {
int x, y;

} Point, *PointPtr;

void DoubleXBroken(Point p)   {  p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken(a);
printf("(%d,%d)\n", a.x, a.y);  // prints: (  ,  )
DoubleXWorks(&a);
printf("(%d,%d)\n", a.x, a.y);   // prints: (  ,  )
return EXIT_SUCCESS;

}



‘-

17
Karthik DantuKarthik Dantu

• Exact method of return depends on calling conventions
Often returned in memory for larger structs

Returning Structs

// a complex number is a + bi
typedef struct complex_st {

double real;    // real component
double imag;    // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
Complex retval;

retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval

}



‘-

18
Karthik DantuKarthik Dantu

• Value passed:  passing a pointer is cheaper and takes less 
space unless struct is small

• Field access:  indirect accesses through pointers are a bit 
more expensive and can be harder for compiler to optimize

• For small structs (like struct complex_st), passing a copy 
of the struct can be faster and often preferred if function only 
reads data; for large structs use pointers

Pass Copy of Struct or Pointer?



‘-

19
Karthik DantuKarthik Dantu

• Write a program that defines:
A new structured type Point

Represent it with floats for the x and y coordinates

A new structured type Rectangle
Assume its sides are parallel to the x-axis and y-axis
Represent it with the bottom-left and top-right Points

A function that computes and returns the area of a Rectangle
A function that tests whether a Point is inside of a Rectangle

Exercise #1



‘-

20
Karthik DantuKarthik Dantu

• Implement AllocSet() and FreeSet()
AllocSet() needs to use malloc twice: once to allocate a new 
ComplexSet and once to allocate the “points” field inside it
FreeSet() needs to use free twice

Extra: Exercise #2

typedef struct complex_st {
double real;    // real component
double imag;    // imaginary component

} Complex;

typedef struct complex_set_st {
double num_points_in_set;
Complex* points;        // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);



‘-

21
Karthik DantuKarthik Dantu

• K&R 6.1-6.4, 7.8.5

Required Reading


