
CSE 220: Systems Programming
POSIX Threads and Synchronization

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction Threads Mutexes Condition Variables Semaphores Summary References

POSIX Threads

The POSIX threads API adds threading to Unix.

You will also see this API called Pthreads or pthreads.

Early Unix provided only the process model for concurrency.

POSIX threads look processes, but share more resources.

Every POSIX thread starts with a function.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

POSIX Synchronization
Pthreads also provides synchronization mechanisms.

In fact, it provides a rather rich set of options!
Mutexes
Semaphores
Condition variables
Thread joining
Memory barriers1

Only semaphores are covered in detail in CS:APP.

1We won’t talk about these.
©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Compilation with Pthreads
Pthreads may require extra compilation options.

On modern Linux, use -pthread both when compiling and linking.

On some other systems, other options may be required:
Provide a different compiler or linker option (such as
-pthreads)
Compile with some preprocessor define (e.g., -DPTHREAD,
-D_REENTRANT)
Link with a library (e.g., -lpthread)
…read the documentation!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Thread Creation

Threads are created with the pthread_create() function:
#include <pthread.h>

int pthread_create(pthread_t *thread ,
const pthread_attr_t *attr ,
void *(* start_function)(void *), void *arg)

The created thread will:
begin at the given start_function function argument
have the given data passed in as an argument

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Pthread Object Declarations

Threads (and other Pthread objects) are declared as values.

They are often used as pointers.

For example:
pthread_t thread;
pthread_create (&thread , NULL , thread_function , NULL);

This allows them to be created without dynamic allocation.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Thread Functions
The thread start function has the following signature:
void *(* start_function)(void *);

This is a function that:
Accepts a single void * argument
Returns void *

Example:
void *thread_main(void *arg) {

return NULL;
}

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Thread Semantics
When pthread_create() is called, it:

Creates a new execution context, including stack
Creates a concurrent flow using that stack and context
Causes the new flow to invoke the provided function and
passes the provided argument

The separation of thread start function and its argument allows
one function to perform multiple tasks based on its argument.

The new thread appears to be scheduled independently.

It can do anything the original thread could.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Thread Attributes
The function pthread_create() accepts a thread attribute object.

This object has type pthread_attr_t.
Passing NULL for this argument will use default attributes.

Thread attributes include:
Processor affinity
The desired scheduler for the thread and its configuration
The detach state of the new thread
The thread’s stack location and size

We will not use thread attributes this semester.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Thread Termination

POSIX threads can terminate in several ways:
The application can exit
By calling pthread_exit()
By returning from the thread start function
It can be canceled by another thread using
pthread_cancel()

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Joining

A thread can be joined, which is a synchronous operation.
#include <pthread.h>

int pthread_join(pthread_t thread , void ** retval);

Joining a thread:
blocks the caller until the thread exits
retrieves the thread’s exit status

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

POSIX Mutexes

POSIX mutexes are of type pthread_mutex_t.
They provide basic mutex functionality with several features:

Optional recursive lock detection
A try lock operation that will return immediately whether or
not the mutex could be locked

It is an error to unlock a POSIX mutex on a different thread than
the thread that locked it.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Mutex Initialization
POSIX mutexes have static and dynamic initializers:
#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

int pthread_mutex_init(pthread_mutex_t *mutex ,
const pthread_mutexattr_t *mutexattr);

In older POSIX specifications, the static initializer could be used
only for compile-time initializers.

The dynamic initializer accepts attributes to configure the mutex.
(Pass NULL to get default behavior.)

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Mutex Operations
A mutex can be locked or unlocked:
#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

The lock and unlock functions operate exactly as expected.

pthread_mutex_trylock() will always return immediately.
If the mutex is already locked, it will return EBUSY.
If the mutex is unlocked, it will lock it and return 0.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Destroying Mutexes

When you are finished with a mutex, you should destroy it.

On Linux, destroying a mutex is essentially no-op.

However, other platforms may associate resources with a mutex.

Destroying the mutex allows those resources to be released.

Destroying a locked mutex is an error.
Destroying a mutex being waited upon2 is an error.

2More on this later…
©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Default Mutex Behaviors
The default mutex may not allow recursive locks.

The following code could deadlock (and will on Linux!):
void deadlock () {

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock (&mutex);
pthread_mutex_lock (&mutex);

}

Mutexes can be initialized with a recursive attribute.

Recursive mutexes maintain a lock count, and the above would
simply require unlocking twice.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Condition Variables

POSIX condition variables work in conjunction with mutexes.

A thread must hold a mutex to wait on a condition variable.

Waiting on a condition variable atomically:
Unlocks the mutex
Puts the thread to sleep until the condition is signaled

A thread can signal one or all threads sleeping on a condition
variable.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Creating a Condition Variable

Condition variables are created like mutexes:
#include <pthread.h>

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init(pthread_cond_t *cond ,

pthread_condattr_t *cond_attr);

The Linux implementation of Pthreads recognizes no condition
variable attributes.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Waiting on Condition Variables

A thread can wait on a condition variable.
#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond ,
pthread_mutex_t *mutex);

Note that there is an associated mutex.

The mutex should protect the condition state.

As previously discussed, threads can spuriously wake.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Waiting Example

extern pthread_mutex_t lock;
extern pthread_cond_t cond;
extern bool done;

void *block_until_done(void *ignored) {
pthread_mutex_lock (&lock);
while (!done) {

pthread_cond_wait (&cond , &lock);
}
pthread_mutex_unlock (&lock);

}

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Signaling Condition Variables
Condition variables can signal:

one waiting thread
all waiting threads

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

Signaling a variable if no threads are waiting does nothing.

The mutex protecting shared state should be used appropriately!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Signaling Example

extern pthread_mutex_t lock;
extern pthread_cond_t cond;
extern bool done;

void signal_done () {
pthread_mutex_lock (&lock);
done = true;
pthread_mutex_unlock (&lock);
pthread_cond_signal (&cond);

}

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Putting it Together
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
bool done;

int main(int argc , char *argv []) {
pthread_t t;

pthread_create (&t, NULL , block_until_done , NULL);
usleep (100000);
signal_done ();
pthread_join(t, NULL);

return 0;
}

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Destroying Condition Variables

Like mutexes
Condition variables should be destroyed
Destroying condition variables does nothing on Linux

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

Destroying a condition variable with waiting threads is an error.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

POSIX Semaphores

POSIX semaphores can operate between either threads or
processes.

They provide counting semaphore semantics.

They obsolete System V semaphores, which you may also see.

POSIX semaphores:
Do not begin with pthread_
Are not found in pthread.h

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

POSIX Semaphore Creation
#include <semaphore.h>

int sem_init(sem_t *sem , int pshared ,
unsigned int value);

There is no static initializer for POSIX semaphores.

If pshared is true:
The semaphore can be used between processes
Must be located in shared memory for this to work

The given value is its initial count.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

POSIX Semaphore Manipulation
#include <semaphore.h>

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);

The wait operation corresponds to Dijkstra’s P(), and post to V().
sem_trywait() is like pthread_mutex_trylock():

It will return immediately even if it cannot decrement the
semaphore
If it succeeds it returns zero
If it does not, it returns EAGAIN

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

Summary

The POSIX threads (pthreads) API provides a thread
abstraction on Unix
POSIX provides many synchronization primitives:

Mutexes
Semaphores
Condition variables
Thread joining

CS:APP covers semaphores in detail

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction Threads Mutexes Condition Variables Semaphores Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 12: 12.3, 12.5-12.7. Pearson, 2016.

Optional Readings
[2] IEEE and The Open Group. The Open Group Base Specifications Issue 7. 2017. URL:

http://pubs.opengroup.org/onlinepubs/9699919799/.
[3] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.

O’Reilly & Associates, Inc., 1996.

©2019 Ethan Blanton / CSE 220: Systems Programming

http://pubs.opengroup.org/onlinepubs/9699919799/

Introduction Threads Mutexes Condition Variables Semaphores Summary References

License

Copyright 2018, 2019 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2019 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Threads
	Mutexes
	Condition Variables
	Semaphores
	Summary

