
‘-

1
Karthik Dantu

C Pointers

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

‘-

2
Karthik DantuKarthik Dantu

• Lab Exam 1 is next week
Missing lab is missing 5% of your grade
Lab Exam means exam, don't talk about it
NO external resources are allowed
No textbook, no notes, no friends, no google
man pages are allowed
If you understood PA0, you'll do well

• If you had >10 submissions for PA0, you are abusing
the autograder – test your code on your own !

• PA1 will be released tonight

Administrivia

‘-

3
Karthik DantuKarthik Dantu

• Memory on POSIX systems is data storage identified by address

• All of the data accessible to your C program has an address

• On a POSIX system, every process appears to have its own
memory

• This memory ranges from address zero to the maximum allowable
address

• It may be the case that not all of it is available, however!

• On Unix systems, the usage of that memory is somewhat
predictable

Memory

‘-

4
Karthik DantuKarthik Dantu

• C pointers are variables that hold memory
addresses

• Pointers lets your program interact with memory
explicitly

• Pointers are very powerful, but potentially unsafe
tools

• The C compiler doesn’t know which pointers are
valid!

• Most non-trivial data structures in C use pointers

Pointers

‘-

5
Karthik DantuKarthik Dantu

• On our platform, you can consider
memory as a large array

• A pointer is an index into that array
• If memory starts at address 0, a pointer

with value p is the p’th byte of that array.
• Note that any given byte may not exist!

Memory Addresses

‘-

6
Karthik DantuKarthik Dantu

• A pointer:
Contains an address
Allows the memory at that address to be manipulated
Associates a type with the manipulated memory

• Remember, to the computer, memory is just bits
• Programmers supply the meaning
• The special pointer value NULL represents an invalid

address

Pointer Concepts

‘-

7
Karthik DantuKarthik Dantu

• A pointer variable is marked with *
char *str;
• This is a pointer to char
(char * is the idiomatic string type in C.)
• A pointer may be marked const, in which case the

memory it points to is const
const char *str;
• It is a good idea to mark pointers const if you don’t

intend to modify their contents

Pointer Syntax

‘-

8
Karthik DantuKarthik Dantu

• What is a pointer to char anyway?
• An address of a character-size integer.
char *str = "Hello";
• This says:
str contains an address
The data at the object stored in str is of type
char

Pointer Types

‘-

9
Karthik DantuKarthik Dantu

• Pointers must store a valid address
• There are limited opportunities to create valid

addresses:
Acquire the address of a variable
Request new memory from the system
Create a string or array constant
Calculation from other addresses

• Pointers created in other manners probably are not
valid

Addresses

‘-

10
Karthik DantuKarthik Dantu

• A pointer may be created from a variable using &
• This is sometimes called the address-of operator
int x = 42;
int *px = &x;
• px is now a pointer to x
(More on the implications of this later.)

Pointer Syntax – Taking Addresses

‘-

11
Karthik DantuKarthik Dantu

• Dereferencing a pointer is accessing the data it
points to

• It can be dereferenced to read or modify that data
• Dereferencing an invalid pointer is undefined

behavior
• This will often result in a segmentation fault, but

may silently corrupt memory!

Dereferencing a Pointer

‘-

12
Karthik DantuKarthik Dantu

• A pointer is dereferenced with *, ->, or []
(More on -> when we get to structures)
• The * notation reads the value at the pointer address
int *px = &x;
int y = *px;
• The variable px is created as a pointer to x, an integer
• The variable y is created as an integer
• y is assigned the value of x by dereferencing px with *

Pointer Syntax — Dereferencing

‘-

13
Karthik DantuKarthik Dantu

• A pointer can also be dereferenced like an array, with
[]

y = px[0];
• This is exactly the same as y = *px;
y = px[1];
• This treats px like an array, and retrieves the second

element
• We will explore the mechanism by which this works

more later.

Pointer Syntax - Dereferencing

‘-

14
Karthik DantuKarthik Dantu

• Arrays and pointers are closely related in C
• You can often think of an array variable as a pointer to the

first array element, and a pointer variable as an array
• However, they are not the same.
• In both cases, dereferencing with [i] says

…add i times the size of the type of this variable to the
base address (first element of the array or pointer value),
then treat the memory at that location as if it is of the
type of this variable.

Pointers and Arrays

‘-

15
Karthik DantuKarthik Dantu

char arr [] = "Hello World";
char *ptr = arr;

Pointers and Arrays

‘-

16
Karthik DantuKarthik Dantu

char arr [] = "string";
char arr2 [] = arr;

• “error: invalid initializer”

char arr [] = "Hello World";
char *ptr = arr;
• ptr points to arr[0]

Arrays != Pointers

‘-

17
Karthik DantuKarthik Dantu

We will explore pointers in a program

Exploring Pointers

‘-

18
Karthik DantuKarthik Dantu

• K&R: 5.1 – 5.4

References

