University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Process Layout

Karthik Dantu
Ethan Blanton
Computer Science and Engineering

University at Buffalo
kdantu@buffalo.edu

Portions of this lecture are from the Princeton COS 217 course slides

Karthik Dantu

University at Buffalo

B pepatmentof Computer scene (@ = Executable & Process

School of Engineering and Applied Sciences

e (C source code

C statements organized into functions
Stored as a collection of files (.c and .h)

e Executable module

l compiling

Binary image generated by compiler executable
Stored as a file (e.g., a.out)
* Process e

Instance of a program that is executing
With its own address space in memory
With its own id and execution state

Managed by the operating system

Karthik Dantu N

University at Buffalo

B pepatnentof Computer scene - Process Execution

School of Engineering and Applied Sciences

* What is virtual memory?

Contiguous addressable memory space for a single process 0
May be swapped into physical memory from disk in pages
Let’'s you pretend each process has its own contiguous memory

Network Audio
CPU Data Bus
432 432
Disk Video Oxffffffff
Memory

Karthik Dantu

Virtual
Address
Space

University at Buffalo

= Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

What to Store: Code and Constants

Executable code and constant data

Program binary, and any shared libraries it loads
Necessary for OS to read the commands

OS knows everything in advance

Knows amount of space needed
Knows the contents of the memory

Known as the “text” segment

Note: Some systems (e.g., hats) store
some constants in “rodata” section

Karthik Dantu

Oxffffffff

Text

University at Buffalo

B bepartmentof Computer scence—— \\fN gt to Store: “Static” Data

School of Engineering and Applied Sciences

* Variables that exist for the entire program I Text
Global variables, and “static” local variables Data
Amount of space required is known in advance BSS

e Data: Initialized in the code

Initial value specified by the programmer
E.g., “int x = 97/

Memory is initialized with this value

e BSS: notinitialized in the code

Initial value not specified
E.g., “int x;°

Oxffffffff

All memory initialized to 0 (on most OS’s)
BSS stands for “Block Started by Symbol”

Karthik Dantu

University at Buffalo

School of Engineering and Applied Sciences

| eprment ofcomenersaence \What to Store: Dynamic Memory

* Memory allocated while program is running 0

E.g., allocated using the malloc () function
And deallocated using the £ree () function

* OS knows nothing in advance
Doesn’t know the amount of space
Doesn’t know the contents

* S0, need to allow room to grow
Known as the “heap”
Detailed example in a few slides

: : : Oxffffffff
More in programming assignment #4

Karthik Dantu

Text

Data

BSS

Heap

University at Buffalo

School of Engineering and Applied Sciences

| eprmen ot omenerscence— \What to Store: Temporary Variables

* Temporary memory during lifetime of a

function or block
Storage for function parameters and local variables

* Need to support nested function calls

One function calls another, and so on
Store the variables of calling function
Know where to return when done

* S0, must allow room to grow
Known as the “stack”
Push on the stack as new function is called
Pop off the stack as the function ends

* Detailed example later on
Karthik Dantu

Oxffffffff

Text

BSS

Heap

Stack

University at Buffalo

= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Memory Layout: Summary

Text: code, constant data

. initialized global & static
variables

BSS: uninitialized global &
static variables

Heap: dynamic memory
Stack: local variables

Karthik Dantu

Oxffffffff

Text

BSS

Heap

University at Buffalo

School of Engineering and Applied Sciences

8 Depmentof computersience—— \jemory Layout: Example

char* string = “hello”;
int iSize;

char* f (void)

{
char* p;
iSize = 8;
p = malloc(iSize);
return p;
}

Karthik Dantu

Oxffffffff

Text

BSS

Heap

Stack

University at Buffalo

School of Engineering and Applied Sciences

8 Depmentof computersience—— \jemory Layout: Example

O
char* string = “hello”; I Text
int i1Size;

BSS
char* £ (void)

{ Heap
char* p; |
iSize = 8;

p = malloc(iSize) ; 1
return p; Stack

} Oxffffffff

q\
10 .« X

Karthik Dantu

University at Buffalo

Y8 Department of Computer Scence Memory Layout: Data

School of Engineering and Applied Sciences

O
char* = “hello”; O Text

int iSize;

BSS
char* f (void)

{ Heap
char* p; |
iSize = 8;

p = malloc(iSize); T
return p; S
} Oxffffffff
q\
1 X

Karthik Dantu

University at Buffalo

8 Depmentof computersience— \jemory Layout: BSS

School of Engineering and Applied Sciences

O
char* string = “hello”; I Text

int iSize;

BSS
char* £ (void)

{ Heap
char* p; |
iSize = 8;

p = malloc(iSize); 1
return p; Stack

} Oxffffffff

q\
12« X

Karthik Dantu

University at Buffalo

School of Engineering and Applied Sciences

Y8 Department of Computer Scence Memory Layout: Heap

O
char* string = “hello”; I Text

int 1iSize;

BSS
char* £ (void)

{ Heap
char* p; |
iSize = 8;

p = malloc(iSize); 1
return p; Stack

} Oxffffffff

q\
13« X

Karthik Dantu

University at Buffalo

School of Engineering and Applied Sciences

Y8 Department of Computer Scence Memory Layout: Stack

O
char* string = “hello”; I Text

int iSize;

BSS
char* £ (void)

{ Heap
char* p; |
iSize = 8;

p = malloc(iSize); 1
return p; Stack

} Oxffffffff

q\
14« X

Karthik Dantu

University at Buffalo

School of Engineering and Applied Sciences

8 pepmentof comeutersience— \jemory Allocation and De-allocation

* How, and when, is memory allocated?

Global and static variables: program startup
Local variables: function call
Dynamic memory: malloc ()

* How is memory deallocated?

Global and static variables: program finish

Local variables: function return
Dynamic memory: free ()

* All memory deallocated when program

ends
It is good style to free allocated memory anyway

Karthik Dantu

Oxffffffff

O

Text

BSS

Heap

University at Buffalo

8 Depment ot computersence—— \jemory Allocation Example

School of Engineering and Applied Sciences

char* string = “hello”;

int 1Size; . BSS: 0 at startup

char* f (void)

{

% o
c_:hfar P/ Stack: at function call
iSize = 8;
p = malloc (1Size) ; - Heap: 8 bytes at malloc

return p;

Karthik Dantu N

University at Buffalo

8 pepment ot computersence—— \jemory Deallocation Example

School of Engineering and Applied Sciences

char* string = “hello”; Available till termination
int iSize; .

Available till termination

char* f (void)

{

char* p; - Deallocate on return from f

4
iSize = 8;
i — Deallocate on free()

p = malloc(iSize) ;

return p;
}

q\
17 .)

Karthik Dantu s

University at Buffalo

| Department ofcompuierscence - Aside: Using Sections

School of Engineering and Applied Sciences

* The exact addresses of sections will vary

* However, you can usually assume certain things
* We'll look at some of those properties later

* Learning to recognize the location of a pointer is
valuable

* For example: all pointers < 4096 (0x1000) are invalid!

Karthik Dantu

University at Buffalo

B Depriment of omputerscene - Stgck Operations

School of Engineering and Applied Sciences

31 : 0
top -» < base

Low Addresses

(An empty stack; each row is 32 bits.)

Karthik Dantu

University at Buffalo

= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Stack Operations

push int 1

42;

3 ; 0

< base
top - 42,

Low Addresses

Karthik Dantu

University at Buffalo
= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

top -»

Low Addresses

push double d = 2.0; .
(Remember padding!) o /

Karthik Dantu

University at Buffalo
= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

tOp -

Low Addresses
push struct { int x; int y; } pos = { x =3, y =5 };
Stack items are typically referenced with respect to its top. ™.
E.g. disattop + 8 A

University at Buffalo
= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

3 ; 0

< base
top -——42 T, .

padding

2.0d

Low Addresses

pop 20 bytes to remove pos and d o
Note that the unused data remains present on the stack. ‘

. 23« X
Karthik Dantu /

University at Buffalo

B Deparment of Compuerscence——\ /3rigble Declarations

School of Engineering and Applied Sciences

* Avariable does two things

Ask compiler to reserve memory for data
Name the location of that data

int array[32];

* “"Make space for 32 integers and call that space array
* Every non-static, local variable is an automatic variable

. 24« X
Karthik Dantu /

University at Buffalo

= Department of Computer Science

and Engineering AUtomatIC Varlable Llfetlme

School of Engineering and Applied Sciences

e Automatic variables are:

Guaranteed to be allocated before they are first referenced
Guaranteed to be valid until their enclosing block is done

* In many cases they are created when the function is
entered

* Placing automatic variables on the stack allows this

Karthik Dantu

University at Buffalo

B pepatmentof Computer sciene A\ itomatic Variable Placement

School of Engineering and Applied Sciences

* Automatic variables may be allocated int 1; {
struct

anywhere int x; int vy,
* The programmer cannot predict their } pos;

order or location
 They may only be in registers! Valid Valid
* Their structure will be preserved - -

Invalid

. 26« X
Karthik Dantu /

University at Buffalo

GB | Department of Computer Science F u n Ctl O n C a I I N eSt| n g

and Engineering
School of Engineering and Applied Sciences

* Note that:

Function calls form a tree over the life of a program
Function calls form a stack at any point in time

* This is because:
A function may call many functions consecutively
A function can call only one function at a time

* These properties directly affect the program stack

Karthik Dantu

University at Buffalo

QB | Department of C ter Sci -
e oomeersdence Eynction Calls

School of Engineering and Applied Sciences

* At its simplest, a function call consists of:
A jJump to a new program location
Execution of the function code
A jJump back to the calling location

* However, many function calls are more complicated. They may:
Allocate automatic variables
Call other functions
Temporarily save registers

* |n these cases, functions require a stack frame.

. 28 o+ X
Karthik Dantu /

University at Buffalo

QB | Department of C ter Sci
e ompersdence Stack Frames

School of Engineering and Applied Sciences

* A stack frame holds information for a single function
iInvocation.

* While the details vary by platform, it will include:
Saved processor registers
Local variables for the current function
Arguments for any called function
The return location for any called function

* We will discuss all of these except saved processor
reqgisters.

(Maybe we’'ll get to those later.)

Karthik Dantu

University at Buffalo

G | Department of C ter Sci -
e omputerscence | ocal Variables

School of Engineering and Applied Sciences

* We have previously discussed automatic variables.
* Often, all local variables for a function are allocated together.

* When the function is entered, it will immediately move the top
of the stack to make room for its local storage.

* This portion of the stack frame is then of fixed size.

* |ts size is often not saved, but recorded in the program
instructions by the compiler.

e The location of individual variables are likewise recorded.

. 30« X
Karthik Dantu /

iversity at Buffalo

18| Department of Computer scence = 1y ction Arguments

ooooooo f Engineering and Applied Sciences

* The platform ABI will determine how arguments are passed
* Normally, it is a combination of registers and stack space

* On x86-64 Linux, the first six 64 bit values are passed in

* registers

* Any additional arguments are pushed onto the stack

* Therefore, many functions have no arguments on the stack

. 31 o X
Karthik Dantu /

iversity at Buffalo

W epriment ot ompuerscies Eynction Arguments Layout

School of Engineering and Applied Sciences

* |f function arguments are pushed onto the stack, they are
normally pushed in reverse order

* Thatis, the first function argument is closest to the top

* Among other reasons, this allows for a variable number
of arguments

* Consider printf: it takes 1 or more arguments
* The first format argument tells it how many

Karthik Dantu

University at Buffalo

B peparnentof cmpuer e The Program Counter

School of Engineering and Applied Sciences

* The other major item that must be tracked for the function call
stack is the program counter

* The program counter is the address of the machine instruction
the processor is currently executing

e For a function call:

the current program counter is pushed before jumping to the called
function

the called function pops the program counter in order to return

* On some architectures there is a dedicated instruction for this

. 33« X
Karthik Dantu /

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

A stack frame

From previous frame{

Stack Frame

,

Current frameq

Karthik Dantu

3

'For this frame

*For next frame

University at Buffalo

B peparnentof compuersience - Stgck Frame: Example

School of Engineering and Applied Sciences

void foo() {
int 1 = 3;
bar (i) ; top -
[* ... %/
}

void bar(int i) §
int j = 2

1=05+7;

Karthik Dantu

Stack

University at Buffalo

B peparnentof compuersience - Stgck Frame: Example

School of Engineering and Applied Sciences

void foo() {
int i = 3;

Stack

to
bar (i) ; P =
[* ... %/
}
void bar(int i) {
int j = 2;
Po5 ey call foo()

Karthik Dantu

University at Buffalo

o tngneeng ruerseene - Stack Frame: Example

School of Engineering and Applied Sciences

G5

void foo() §

int iﬂ’;\ Stack
var (1); .

[* ... %/

}

void bar(int i) {
int j = 2;

Reserve space for foo()’s locals

1=095+];

. 37 /{ \\ A
Karthik Dantu /

University at Buffalo

School of Engineering and Applied Sciences

B peparnentof compuersience - Stgck Frame: Example

void foo() {
int 1 = 3;

bar (i);
[* ... %]
}

void bar(int 1) {
int j = 2;

1=05+ 17

Karthik Dantu

Stack

op B

Execute foo()

University at Buffalo

School of Engineering and Applied Sciences

B peparnentof compuersience - Stgck Frame: Example

void foo() §
int 1 = 3;

bar (i) ;

} /* *// tOp:)

void bar(int i) {
int j = 2;

1=095+7;

Stack

Karthik Dantu

Execute foo():
prepare to call bar ()

< foo:1
< bar:1

University at Buffalo

School of Engineering and Applied Sciences

B peparnentof compuersience - Stgck Frame: Example

void foo() {
int 1 = 3;

bar(i);

[* ... %]
}

void bar(int i) 1

int j = 2;

1=95+];

Karthik Dantu

Stack

top »

Push PC; call bar()

< foo:1
< bar:1

University at Buffalo

B peparnentof compuersience - Stgck Frame: Example

School of Engineering and Applied Sciences

void foo() §

int 1 = 3; Stack
bar(i); :
/* () */ < foo:1

< bar:i

}

void bar(int i) {
int j ;

op - « bar:j

Reserve space for bar()’s locals

. 4 o X
Karthik Dantu /

University at Buffalo

B peparnentof compuersience - Stgck Frame: Example

School of Engineering and Applied Sciences

void foo() §

int 1 = 3; Stack
bar(1i); :
/* () */ « foo:1

< bar:1

}

void bar(int i) {
int j = 2;

top -» « bar:]

Execute bar()

1=095+7;

| 2 X
Karthik Dantu .

University at Buffalo

School of Engineering and Applied Sciences

B peparnentof compuersience - Stgck Frame: Example

void foo() {
int i = 3; Stack
bar (1) ; « foo:i
* * :
} [* ... %] « bar:i
void bar(int i) §
int j = 2; Execute bar()
i =5+ i;
}
q\

Karthik Dantu

University at Buffalo

= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Stack Frame: Example

void foo() {
int 1 = 3;

bar (i) ;
[* ... *]

}

void bar(int 1) {
int j = 2;
=5+ J;

Stack

op

/
foo() pc
2

Return from bar();
Pop bar()’s stack frame;
Execute foo()

| 44 o X
Karthik Dantu /

University at Buffalo

QB | Department of Computer Science
an(!IDEngineering ’ S U m m a ry

School of Engineering and Applied Sciences

* POSIX programs are laid out in sections
The stack is a section

* The stack grows downward

* Automatic variables are allocated on the stack
* Stack frames track function calls

* |tems removed from the stack are not cleared

* Stack-allocated arguments are why C is call-by-
value

Karthik Dantu

