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• C source code
C statements organized into functions

Stored as a collection of files (.c and .h)

• Executable module
Binary image generated by compiler

Stored as a file (e.g., a.out)

• Process
Instance of a program that is executing

With its own address space in memory

With its own id and execution state

Managed by the operating system

Code à Executable à Process
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• What is virtual memory?
Contiguous addressable memory space for a single process
May be swapped into physical memory from disk in pages
Let’s you pretend each process has its own contiguous memory 

Process Execution
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• Executable code and constant data

Program binary, and any shared libraries it loads

Necessary for OS to read the commands

• OS knows everything in advance

Knows amount of space needed

Knows the contents of the memory

• Known as the “text” segment

• Note: Some systems (e.g., hats) store 

some constants in “rodata” section

What to Store: Code and Constants
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• Variables that exist for the entire program
Global variables, and “static” local variables
Amount of space required is known in advance

• Data: initialized in the code 
Initial value specified by the programmer

E.g., “int x = 97;”
Memory is initialized with this value

• BSS: not initialized in the code 
Initial value not specified

E.g., “int x;”
All memory initialized to 0 (on most OS’s)
BSS  stands for “Block Started by Symbol”

What to Store: “Static” Data
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• Memory allocated while program is running
E.g., allocated using the malloc() function 

And deallocated using the free() function

• OS knows nothing in advance
Doesn’t know the amount of space
Doesn’t know the contents

• So, need to allow room to grow
Known as the “heap”
Detailed example in a few slides
More in programming assignment #4

What to Store: Dynamic Memory
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• Temporary memory during lifetime of a 
function or block
Storage for function parameters and local variables

• Need to support nested function calls
One function calls another, and so on
Store the variables of calling function
Know where to return when done

• So, must allow room to grow
Known as the “stack”
Push on the stack as new function is called
Pop off the stack as the function ends

• Detailed example later on

What to Store: Temporary Variables
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• Text: code, constant data
• Data: initialized global & static 

variables
• BSS: uninitialized global & 

static variables
• Heap: dynamic memory
• Stack: local variables

Memory Layout: Summary
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Example
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Example
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Data
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: BSS
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Heap
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Stack
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• How, and when, is memory allocated?
Global and static variables: program startup 
Local variables: function call 
Dynamic memory: malloc()

• How is memory deallocated?
Global and static variables: program finish 
Local variables: function return
Dynamic memory: free()

• All memory deallocated when program 
ends
It is good style to free allocated memory anyway

Memory Allocation and De-allocation
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Allocation Example

BSS: 0 at startup
Data: “hello” at startup

Stack: at function call

Heap: 8 bytes at malloc
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char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Deallocation Example

Available till termination

Deallocate on return from f

Deallocate on free()

Available till termination
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• The exact addresses of sections will vary
• However, you can usually assume certain things
• We’ll look at some of those properties later
• Learning to recognize the location of a pointer is 

valuable
• For example: all pointers < 4096 (0x1000) are invalid!

Aside: Using Sections
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Stack Operations
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Stack Operations
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• A variable does two things
Ask compiler to reserve memory for data
Name the location of that data

• “Make space for 32 integers and call that space array
• Every non-static, local variable is an automatic variable

Variable Declarations

int array[32];
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• Automatic variables are:
Guaranteed to be allocated before they are first referenced
Guaranteed to be valid until their enclosing block is done

• In many cases they are created when the function is 
entered

• Placing automatic variables on the stack allows this

Automatic Variable Lifetime
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• Automatic variables may be allocated 
anywhere

• The programmer cannot predict their 
order or location

• They may only be in registers!
• Their structure will be preserved

Automatic Variable Placement
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• Note that:
Function calls form a tree over the life of a program
Function calls form a stack at any point in time

• This is because:
A function may call many functions consecutively
A function can call only one function at a time

• These properties directly affect the program stack

Function Call Nesting
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• At its simplest, a function call consists of:
A jump to a new program location
Execution of the function code
A jump back to the calling location

• However, many function calls are more complicated. They may:
Allocate automatic variables
Call other functions
Temporarily save registers
…

• In these cases, functions require a stack frame.

Function Calls
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• A stack frame holds information for a single function 
invocation.

• While the details vary by platform, it will include:
Saved processor registers
Local variables for the current function
Arguments for any called function
The return location for any called function

• We will discuss all of these except saved processor 
registers.

(Maybe we’ll get to those later.)

Stack Frames
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• We have previously discussed automatic variables.
• Often, all local variables for a function are allocated together.
• When the function is entered, it will immediately move the top 

of the stack to make room for its local storage.
• This portion of the stack frame is then of fixed size.
• Its size is often not saved, but recorded in the program 

instructions by the compiler.
• The location of individual variables are likewise recorded.

Local Variables
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• The platform ABI will determine how arguments are passed

• Normally, it is a combination of registers and stack space

• On x86-64 Linux, the first six 64 bit values are passed in

• registers

• Any additional arguments are pushed onto the stack

• Therefore, many functions have no arguments on the stack

Function Arguments
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• If function arguments are pushed onto the stack, they are 
normally pushed in reverse order

• That is, the first function argument is closest to the top
• Among other reasons, this allows for a variable number 

of arguments
• Consider printf: it takes 1 or more arguments
• The first format argument tells it how many

Function Arguments Layout
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• The other major item that must be tracked for the function call 
stack is the program counter

• The program counter is the address of the machine instruction 
the processor is currently executing

• For a function call:
the current program counter is pushed before jumping to the called 
function
the called function pops the program counter in order to return

• On some architectures there is a dedicated instruction for this

The Program Counter
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A stack frame
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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Stack Frame: Example
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• POSIX programs are laid out in sections
The stack is a section

• The stack grows downward
• Automatic variables are allocated on the stack
• Stack frames track function calls
• Items removed from the stack are not cleared
• Stack-allocated arguments are why C is call-by-

value

Summary


