
‘-

1
Karthik Dantu

Process Layout

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

Portions of this lecture are from the Princeton COS 217 course slides

‘-

2
Karthik DantuKarthik Dantu

• C source code
C statements organized into functions

Stored as a collection of files (.c and .h)

• Executable module
Binary image generated by compiler

Stored as a file (e.g., a.out)

• Process
Instance of a program that is executing

With its own address space in memory

With its own id and execution state

Managed by the operating system

Code à Executable à Process

executable

C source code

process

compiling

running

‘-

3
Karthik DantuKarthik Dantu

• What is virtual memory?
Contiguous addressable memory space for a single process
May be swapped into physical memory from disk in pages
Let’s you pretend each process has its own contiguous memory

Process Execution

CPU

Memory
Disk

Network

Video

Audio

Data Bus

32 32
0

0xffffffff

Virtual
Address
Space

‘-

4
Karthik DantuKarthik Dantu

• Executable code and constant data

Program binary, and any shared libraries it loads

Necessary for OS to read the commands

• OS knows everything in advance

Knows amount of space needed

Knows the contents of the memory

• Known as the “text” segment

• Note: Some systems (e.g., hats) store

some constants in “rodata” section

What to Store: Code and Constants

0

0xffffffff

Text

‘-

5
Karthik DantuKarthik Dantu

• Variables that exist for the entire program
Global variables, and “static” local variables
Amount of space required is known in advance

• Data: initialized in the code
Initial value specified by the programmer

E.g., “int x = 97;”
Memory is initialized with this value

• BSS: not initialized in the code
Initial value not specified

E.g., “int x;”
All memory initialized to 0 (on most OS’s)
BSS stands for “Block Started by Symbol”

What to Store: “Static” Data

0

0xffffffff

Text

Data

BSS

‘-

6
Karthik DantuKarthik Dantu

• Memory allocated while program is running
E.g., allocated using the malloc() function

And deallocated using the free() function

• OS knows nothing in advance
Doesn’t know the amount of space
Doesn’t know the contents

• So, need to allow room to grow
Known as the “heap”
Detailed example in a few slides
More in programming assignment #4

What to Store: Dynamic Memory

0

0xffffffff

Text

Data

BSS

Heap

‘-

7
Karthik DantuKarthik Dantu

• Temporary memory during lifetime of a
function or block
Storage for function parameters and local variables

• Need to support nested function calls
One function calls another, and so on
Store the variables of calling function
Know where to return when done

• So, must allow room to grow
Known as the “stack”
Push on the stack as new function is called
Pop off the stack as the function ends

• Detailed example later on

What to Store: Temporary Variables

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

8
Karthik DantuKarthik Dantu

• Text: code, constant data
• Data: initialized global & static

variables
• BSS: uninitialized global &

static variables
• Heap: dynamic memory
• Stack: local variables

Memory Layout: Summary

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

9
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Example

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

10
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Example

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

11
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Data

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

12
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: BSS

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

13
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Heap

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

14
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Layout: Stack

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

15
Karthik DantuKarthik Dantu

• How, and when, is memory allocated?
Global and static variables: program startup
Local variables: function call
Dynamic memory: malloc()

• How is memory deallocated?
Global and static variables: program finish
Local variables: function return
Dynamic memory: free()

• All memory deallocated when program
ends
It is good style to free allocated memory anyway

Memory Allocation and De-allocation

0

0xffffffff

Text

Data

BSS

Heap

Stack

‘-

16
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Allocation Example

BSS: 0 at startup
Data: “hello” at startup

Stack: at function call

Heap: 8 bytes at malloc

‘-

17
Karthik DantuKarthik Dantu

char* string = “hello”;
int iSize;

char* f(void)
{

char* p;
iSize = 8;
p = malloc(iSize);
return p;

}

Memory Deallocation Example

Available till termination

Deallocate on return from f

Deallocate on free()

Available till termination

‘-

18
Karthik DantuKarthik Dantu

• The exact addresses of sections will vary
• However, you can usually assume certain things
• We’ll look at some of those properties later
• Learning to recognize the location of a pointer is

valuable
• For example: all pointers < 4096 (0x1000) are invalid!

Aside: Using Sections

‘-

19
Karthik DantuKarthik Dantu

Stack Operations

‘-

20
Karthik DantuKarthik Dantu

Stack Operations

‘-

21
Karthik DantuKarthik Dantu

‘-

22
Karthik DantuKarthik Dantu

‘-

23
Karthik DantuKarthik Dantu

‘-

24
Karthik DantuKarthik Dantu

• A variable does two things
Ask compiler to reserve memory for data
Name the location of that data

• “Make space for 32 integers and call that space array
• Every non-static, local variable is an automatic variable

Variable Declarations

int array[32];

‘-

25
Karthik DantuKarthik Dantu

• Automatic variables are:
Guaranteed to be allocated before they are first referenced
Guaranteed to be valid until their enclosing block is done

• In many cases they are created when the function is
entered

• Placing automatic variables on the stack allows this

Automatic Variable Lifetime

‘-

26
Karthik DantuKarthik Dantu

• Automatic variables may be allocated
anywhere

• The programmer cannot predict their
order or location

• They may only be in registers!
• Their structure will be preserved

Automatic Variable Placement

‘-

27
Karthik DantuKarthik Dantu

• Note that:
Function calls form a tree over the life of a program
Function calls form a stack at any point in time

• This is because:
A function may call many functions consecutively
A function can call only one function at a time

• These properties directly affect the program stack

Function Call Nesting

‘-

28
Karthik DantuKarthik Dantu

• At its simplest, a function call consists of:
A jump to a new program location
Execution of the function code
A jump back to the calling location

• However, many function calls are more complicated. They may:
Allocate automatic variables
Call other functions
Temporarily save registers
…

• In these cases, functions require a stack frame.

Function Calls

‘-

29
Karthik DantuKarthik Dantu

• A stack frame holds information for a single function
invocation.

• While the details vary by platform, it will include:
Saved processor registers
Local variables for the current function
Arguments for any called function
The return location for any called function

• We will discuss all of these except saved processor
registers.

(Maybe we’ll get to those later.)

Stack Frames

‘-

30
Karthik DantuKarthik Dantu

• We have previously discussed automatic variables.
• Often, all local variables for a function are allocated together.
• When the function is entered, it will immediately move the top

of the stack to make room for its local storage.
• This portion of the stack frame is then of fixed size.
• Its size is often not saved, but recorded in the program

instructions by the compiler.
• The location of individual variables are likewise recorded.

Local Variables

‘-

31
Karthik DantuKarthik Dantu

• The platform ABI will determine how arguments are passed

• Normally, it is a combination of registers and stack space

• On x86-64 Linux, the first six 64 bit values are passed in

• registers

• Any additional arguments are pushed onto the stack

• Therefore, many functions have no arguments on the stack

Function Arguments

‘-

32
Karthik DantuKarthik Dantu

• If function arguments are pushed onto the stack, they are
normally pushed in reverse order

• That is, the first function argument is closest to the top
• Among other reasons, this allows for a variable number

of arguments
• Consider printf: it takes 1 or more arguments
• The first format argument tells it how many

Function Arguments Layout

‘-

33
Karthik DantuKarthik Dantu

• The other major item that must be tracked for the function call
stack is the program counter

• The program counter is the address of the machine instruction
the processor is currently executing

• For a function call:
the current program counter is pushed before jumping to the called
function
the called function pops the program counter in order to return

• On some architectures there is a dedicated instruction for this

The Program Counter

‘-

34
Karthik DantuKarthik Dantu

A stack frame

‘-

35
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

36
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

37
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

38
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

39
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

40
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

41
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

42
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

43
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

44
Karthik DantuKarthik Dantu

Stack Frame: Example

‘-

45
Karthik DantuKarthik Dantu

• POSIX programs are laid out in sections
The stack is a section

• The stack grows downward
• Automatic variables are allocated on the stack
• Stack frames track function calls
• Items removed from the stack are not cleared
• Stack-allocated arguments are why C is call-by-

value

Summary

