
‘-

1

System I/O

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

‘-

2

Today: Unix I/O and C Standard I/O

• Two sets: system-level and C level

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

‘-

3

Unix I/O Overview

• A Linux file is a sequence of m bytes:
• B0 , B1 , , Bk , , Bm-1

• Cool fact: All I/O devices are represented as files:
• /dev/sda2 (disk partition)
• /dev/tty2 (terminal)

• Even the kernel is represented as a file:
• /boot/vmlinuz-3.13.0-55-generic (kernel image)
• /proc (kernel data structures)

‘-

4

Unix I/O Overview

• Elegant mapping of files to devices allows kernel to
export simple interface called Unix I/O:
• Opening and closing files

- open()and close()
• Reading and writing a file

- read() and write()
• Changing the current file position (seek)

- indicates next offset into file to read or write
- lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

‘-

5

File Types

• Each file has a type indicating its role in the system
• Regular file: Contains arbitrary data
• Directory: Index for a related group of files
• Socket: For communicating with a process on another machine

• Other file types beyond our scope
• Named pipes (FIFOs)
• Symbolic links
• Character and block devices

‘-

6

Regular Files

• A regular file contains arbitrary data
• Applications often distinguish between text files and binary

files
• Text files are regular files with only ASCII or Unicode characters
• Binary files are everything else

- e.g., object files, JPEG images
• Kernel doesn’t know the difference!

• Text file is sequence of text lines
• Text line is sequence of chars terminated by newline char (‘\n’)

- Newline is 0xa, same as ASCII line feed character (LF)

• End of line (EOL) indicators in other systems
• Linux and Mac OS: ‘\n’ (0xa)

- line feed (LF)
• Windows and Internet protocols: ‘\r\n’ (0xd 0xa)

- Carriage return (CR) followed by line feed (LF)

‘-

7

Directories

• Directory consists of an array of links
• Each link maps a filename to a file

• Each directory contains at least two entries
• . (dot) is a link to itself
• .. (dot dot) is a link to the parent directory in the directory hierarchy (next

slide)

• Commands for manipulating directories
• mkdir: create empty directory
• ls: view directory contents
• rmdir: delete empty directory

‘-

8

Directory Hierarchy

• All files are organized as a hierarchy anchored by root directory
named / (slash)

• Kernel maintains current working directory (cwd) for each process
• Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

‘-

9

Pathnames

• Locations of files in the hierarchy denoted by pathnames
• Absolute pathname starts with ‘/’ and denotes path from root

- /home/elb/hello.c

• Relative pathname denotes path from current working directory
- ../home/elb/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd elb/ kdantu/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/kdantu

‘-

10

Opening Files

• Opening a file informs the kernel that you are getting ready
to access that file

• Returns a small identifying integer file descriptor
• fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with three
open files associated with a terminal:
• 0: standard input (stdin)
• 1: standard output (stdout)
• 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

‘-

11

Closing Files

• Closing a file informs the kernel that you are finished accessing that file

• Closing an already closed file is a recipe for disaster in threaded programs
(more on this later)
• Moral: Always check return codes, even for seemingly benign functions

such as close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}

‘-

12

Reading Files

• Reading a file copies bytes from the current file position to
memory, and then updates file position

• Returns number of bytes read from file fd into buf
• Return type ssize_t is signed integer
• nbytes < 0 indicates that an error occurred
• Short counts (nbytes < sizeof(buf)) are possible and

are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}

‘-

13

Writing Files

• Writing a file copies bytes from memory to the current file
position, and then updates current file position

• Returns number of bytes written from buf to file fd
• nbytes < 0 indicates that an error occurred
• As with reads, short counts are possible and are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");
exit(1);

}

‘-

14

Simple Unix I/O example

• Copying file to stdout, one byte at a time

• Demo:
linux> strace ./showfile1_nobuf names.txt

#include <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{

char c;
int infd;
if (argc == 2) {

infd = open(argv[1], O_RDONLY);
}
while(read(infd, &c, 1) != 0)

write(1, c, sizeof(c));
exit(0);

}

‘-

15

On Short Counts

• Short counts can occur in these situations:
• Encountering (end-of-file) EOF on reads
• Reading text lines from a terminal
• Reading and writing network sockets

• Short counts never occur in these situations:
• Reading from disk files (except for EOF)
• Writing to disk files

• Best practice is to always allow for short counts.

‘-

16

Home-grown buffered I/O code
• Copying file to stdout, BUFSIZE bytes at a time

• Demo:
linux> strace ./showfile2_buf names.txt

#include <stdio.h>
#define BUFSIZE 64

int main(int argc, char *argv[])
{

char buf[BUFSIZE];
int infd = 1; // 1 - STDOUT
if (argc == 2) {

infd = open(argv[1], O_RDONLY);
}
while((nread = read(infd, &buf, BUFSIZE))) != 0)

write(1, buf, sizeof(buf));
exit(0);

}

‘-

17

File Metadata

• Metadata is data about data, in this case file data
• Per-file metadata maintained by kernel

§ accessed by users with the stat and fstat functions
/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* Device */
ino_t st_ino; /* inode */
mode_t st_mode; /* Protection and file type */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device type (if inode device) */
off_t st_size; /* Total size, in bytes */
unsigned long st_blksize; /* Blocksize for filesystem I/O */
unsigned long st_blocks; /* Number of blocks allocated */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last modification */
time_t st_ctime; /* Time of last change */

};

‘-

18

How the Unix Kernel Represents Open Files

• Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

File pos is maintained per open file

‘-

22

I/O Redirection

• Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

• Answer: By calling the dup2(oldfd, newfd) function
• Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

‘-

23

I/O Redirection Example

• Step #1: open file to which stdout should be redirected
§ Happens in child executing shell code, before exec

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File A

File pos

refcnt=1
...

File access

...

File size

File type

File B

‘-

24

I/O Redirection Example (cont.)

• Step #2: call dup2(4,1)
§ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=0

...

File pos
refcnt=2

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

Two descriptors point to the same file

‘-

25

Warm-Up: I/O and Redirection Example

• What would this program print for file containing “abcde”?

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{

FILE *fd1, *fd2, *fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = fopen(fname, O_RDONLY);
fd2 = fopen(fname, O_RDONLY);
fd3 = fopen(fname, O_RDONLY);
dup2(fd2, fd3);
fread(&c1, 1, 1, fd1)));
fread(&c2, 1, 1, fd2)));
fread(&c3, 1, 1, fd3)));
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

}

‘-

26

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{

FILE *fd1, *fd2, *fd3;
char c1, c2, c3;
char *fname = argv[1];
fd1 = fopen(fname, O_RDONLY);
fd2 = fopen(fname, O_RDONLY);
fd3 = fopen(fname, O_RDONLY);
dup2(fd2, fd3);
fread(&c1, 1, 1, fd1)));
fread(&c2, 1, 1, fd2)));
fread(&c3, 1, 1, fd3)));
printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
return 0;

}

Warm-Up: I/O and Redirection Example

• What would this program print for file containing “abcde”?

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

‘-

29

Standard I/O Functions

• The C standard library (libc.so) contains a
collection of higher-level standard I/O functions
• Documented in Appendix B of K&R

• Examples of standard I/O functions:
• Opening and closing files (fopen and fclose)

• Reading and writing bytes (fread and fwrite)

• Reading and writing text lines (fgets and fputs)

• Formatted reading and writing (fscanf and fprintf)

‘-

30

Standard I/O Streams

• Standard I/O models open files as streams
• Abstraction for a file descriptor and a buffer in memory

• C programs begin life with three open streams
(defined in stdio.h)
• stdin (standard input)
• stdout (standard output)
• stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

‘-

31

Buffered I/O: Motivation

• Applications often read/write one character at a time
• getc, putc, ungetc
• gets, fgets

- Read line of text one character at a time, stopping at newline

• Implementing as Unix I/O calls expensive
• read and write require Unix kernel calls

- > 10,000 clock cycles

• Solution: Buffered read
• Use Unix read to grab block of bytes
• User input functions take one byte at a time from buffer

- Refill buffer when empty

unreadalready readBuffer

‘-

32

Buffering in Standard I/O

• Standard I/O functions use buffered I/O

• Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

‘-

33

Standard I/O Buffering in Action

• You can see this buffering in action for yourself,
using the always fascinating Linux strace
program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

‘-

34

Standard I/O Example

• Copying file to stdout, line-by-line with stdio

• Demo:
linux> strace ./showfile3_stdio names.txt

#include <stdio.h>
#define MLINE 1024

int main(int argc, char *argv[])
{

char buf[MLINE];
FILE *infile = stdin;
if (argc == 2) {

infile = fopen(argv[1], "r");
if (!infile) exit(1);

}
while(fgets(buf, MLINE, infile) != NULL)

fprintf(stdout, buf);
exit(0);

}

‘-

35

Today: Unix I/O and C Standard I/O

• Two incompatible libraries building on Unix I/O
• Robust I/O (RIO): 15-213 special wrappers

good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

‘-

36

Unix I/O Recap

• Short counts can occur in these situations:
• Encountering (end-of-file) EOF on reads
• Reading text lines from a terminal
• Reading and writing network sockets

• Short counts never occur in these situations:
• Reading from disk files (except for EOF)
• Writing to disk files

• Best practice is to always allow for short counts.

/* Read at most max_count bytes from file into buffer.
Return number bytes read, or error value */

ssize_t read(int fd, void *buffer, size_t max_count);

/* Write at most max_count bytes from buffer to file.
Return number bytes written, or error value */

ssize_t write(int fd, void *buffer, size_t max_count);

‘-

37

Pros and Cons of Unix I/O

• Pros
• Unix I/O is the most general and lowest overhead form of I/O

- All other I/O packages are implemented using Unix I/O functions
• Unix I/O provides functions for accessing file metadata
• Unix I/O functions are async-signal-safe and can be used safely in

signal handlers

• Cons
• Dealing with short counts is tricky and error prone
• Efficient reading of text lines requires some form of buffering, also

tricky and error prone
• Both of these issues are addressed by the standard I/O and RIO

packages

‘-

38

Pros and Cons of Standard I/O

• Pros:

• Buffering increases efficiency by decreasing the number of

read and write system calls

• Short counts are handled automatically

• Cons:

• Provides no function for accessing file metadata

• Standard I/O functions are not async-signal-safe, and not

appropriate for signal handlers

• Standard I/O is not appropriate for input and output on

network sockets

- There are poorly documented restrictions on streams that interact

badly with restrictions on sockets (CS:APP3e, Sec 10.11)

‘-

39

Choosing I/O Functions

• General rule: use the highest-level I/O functions you can
• Many C programmers are able to do all of their work using the

standard I/O functions
• But, be sure to understand the functions you use!

• When to use standard I/O
• When working with disk or terminal files

• When to use raw Unix I/O
• Inside signal handlers, because Unix I/O is async-signal-safe
• In rare cases when you need absolute highest performance

• When to use RIO
• When you are reading and writing network sockets
• Avoid using standard I/O on sockets

‘-

40

Aside: Working with Binary Files

• Binary File
• Sequence of arbitrary bytes
• Including byte value 0x00

• Functions you should never use on binary files
• Text-oriented I/O: such as fgets, scanf,
rio_readlineb
- Interpret EOL characters.
- Use functions like rio_readn or rio_readnb instead

• String functions
- strlen, strcpy, strcat
- Interprets byte value 0 (end of string) as special

‘-

41
Karthik Dantu

Required Reading

