
‘-

1
Karthik Dantu

CSE 220: Systems
Programming

2 – Introduction to C
Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

‘-

2
Karthik DantuKarthik Dantu

• Dozens of programming languages – why C?
C is “high level” – but not very
C provides functions, structured programming, complex data types
and many other powerful abstractions

• It also exposes many architectural details

• Most system software including OS kernels are written in C/C++

• C influences many other languages

Why C?

‘-

3
Karthik DantuKarthik Dantu

• Effective programming in C requires that you master your
understanding of the machine

• You must be aware of the system architecture and details of
operation

• We will be using C in Linux on x86-64
• The compiler we will use is gcc
• The dialect of C we will use is C99

Effective C

‘-

4
Karthik DantuKarthik Dantu

• That said, CSE 220 is not about learning C (only)

• CSE 220 teaches you systems concepts, and you will learn to implement
them in C

• We will not cover all details of C syntax

• We will cover ideas, and some syntax when we feel necessary

• You should consult:
K&R book
Unix man pages
Given code

CSE 220 and C

‘-

5
Karthik DantuKarthik Dantu

• Data in memory is stored at accessible addresses

• CPU is able to manipulate data stored in memory and access I/O

• Program code is executed as a series of instructions
That manipulate memory
Interact with input/output devices
Display results to the user

• Program code is also stored in memory – possibly not accessible

A Simple Computer Model

‘-

6
Karthik DantuKarthik Dantu

• Most modern OSes (including *NIX) provide a particular model

• Each process has its own dedicated resources, i.e., each process
appears to have:
A dedicated CPU
Private, dedicated memory
Private I/O

• OS provides mechanisms to share existing resources among all active
processes

Modern Multi-Tasking OS

‘-

7
Karthik DantuKarthik Dantu

• C programs (all programs) are translated into machine instructions
• Computer executes these instructions in order
• Instructions are things like:

Add two numbers together (and other arithmetic operations)
Store a number to a location in memory
Retrieve a sensor reading
Display a result

• Its all numbers!

Program Execution

‘-

8
Karthik DantuKarthik Dantu

• C is an imperative language

• It consists of a list of statements

• Each statement is an instruction to the computer to do something

• Statements can be grouped into functions

• The computer executes the program from beginning to end (roughly) –
i.e., imperative

• Modern systems (especially interactive systems such as
smartphones/robots) allow for event-driven programming

Imperative Programming

‘-

9
Karthik DantuKarthik Dantu

• Every C program starts with the function main()
int main() {
return 0;

}
• Every C function takes zero or more arguments
• Every C function can return a single value
• Every statement ends with a semi-colon (;)
• C programs are stored in files that end with .c extension

• Lets examine main() in more detail

Let Us C

‘-

10
Karthik DantuKarthik Dantu

• The main function takes two arguments:

int main(int argc, char *argv[])

main()

return type arguments

‘-

11
Karthik DantuKarthik Dantu

• The main function takes two arguments:

int main(int argc, char *argv[])

main()

First
argument

Second
argument

delimiter

‘-

12
Karthik DantuKarthik Dantu

• The main function takes two arguments:

int main(int argc, char *argv[])

main()

Argument
type

Argument
name

‘-

13
Karthik DantuKarthik Dantu

• The main function takes two arguments:

int main(int argc, char *argv[])

main()

Pointer
type

Argument is
an array

‘-

14
Karthik DantuKarthik Dantu

$ gcc program.c –o program

Aside on slide syntax

Terminal
prompt

• $ sign indicates the terminal prompt

• Please do not type this – you will get an error
• You should type everything that follows the $ sign

• Good time to brush up on Linux basics

[1] Quick tutorial: https://www.digitalocean.com/community/tutorials/an-introduction-to-linux-basics
[2] Comprehensive set: https://ryanstutorials.net/linuxtutorial/

https://www.digitalocean.com/community/tutorials/an-introduction-to-linux-basics
https://ryanstutorials.net/linuxtutorial/

‘-

15
Karthik DantuKarthik Dantu

• Assume you saved our earlier program as trivial.c:
int main() {

return 0;

}

• We can compile it into an executable program as follows:
$ gcc trivial.c

• This produces a file a.out, which is a native binary
$ ls

a.out trivial.c

• You can run the binary as follows:
$./a.out

$

Compiling a C Program

‘-

16
Karthik DantuKarthik Dantu

• “Hello World” is a classic first program when learning a language
• Objective is to print “Hello, world!” in the terminal

First Real Program

‘-

17
Karthik DantuKarthik Dantu

Last Class
• Course syllabus
• K&R: 1.1-1.3

Next Class
• K&R: 1.6, 1.7, 1.9

Required Readings

