
‘-

1
Karthik Dantu

Bits, Bytes and Integers

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

‘-

2
Karthik DantuKarthik Dantu

• PA1 due this Friday – test early and often!
We cannot help everyone on Friday!
Don’t expect answers on Piazza into the night and early morning

• Avoid using actual numbers (80, 24 etc.) – use macros!
• Lab this week is on testing
• Programming best practices
• Lab Exam – four students have already failed class!

Lab exams are EXAMS – no using the Internet, submitting solutions from
dorm, home
Please don’t give code/exam to friends – we will know!

Administrivia

‘-

3
Karthik DantuKarthik Dantu

• Each bit is 0 or 1
• By encoding/interpreting sets of bits in various ways

Computers determine what to do (instructions)
… and represent and manipulate numbers, sets, strings, etc…

• Why bits? Electronic Implementation
Easy to store with bistable elements
Reliably transmitted on noisy and inaccurate wires

Everything is Bits

0.0V
0.2V

0.9V
1.1V

0 1 0

‘-

4
Karthik DantuKarthik Dantu

• To the computer, memory is just bytes
• Computer doesn’t know data types
• Modern processor can only manipulate:

Integers (Maybe only single bits)
Maybe floating point numbers
… repeat !

• Everything else is in software

Memory as Bytes

‘-

5
Karthik DantuKarthik Dantu

Reminder: Computer Architecture

‘-

6
Karthik DantuKarthik Dantu

• Each bus has a width, which is literally the number of wires it has
• Each wire transmits one bit per transfer
• Each bus transfer is of that width, though some bits might be

ignored
• Therefore, memory has a word size from the viewpoint of the

CPU: the number of wires on that bus

Buses

‘-

7
Karthik DantuKarthik Dantu

• CPU fetches data from memory in words the width of the
memory bus

• It places that data in registers the width of the CPU word

• The register width is the native integer size

• These word widths may or may not be the same
It is in x86-64

• If they are not, a transfer may require:
Multiple registers
Multiple memory transfers

CPU to Memory Transfer

‘-

8
Karthik DantuKarthik Dantu

• Programming languages expose things such as:

Booleans

Strings

Structures

Classes

• How? -> We impose meaning on words in memory by

convention

E.g., We discussed previously that a C string is a sequence of

bytes that are adjacent in memory

Imposing Structure on Memory

‘-

9
Karthik DantuKarthik Dantu

• Base 2 Number Representation
Represent 1521310 as 111011011011012

Represent 1.2010 as 1.0011001100110011[0011]…2

Represent 1.5213 X 104 as 1.11011011011012 X 213

• Byte = 8 bits
Binary 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal 0016 to FF16

Base 16 number representation
Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
Write FA1D37B16 in C as

0xFA1D37B
0xfa1d37b

Counting in Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

15213: 0011 1011 0110 1101

3 B 6 D

‘-

10
Karthik DantuKarthik Dantu

Boolean Algebra

• Developed by George Boole in 19th Century
Algebraic representation of logic

Encode “True” as 1 and “False” as 0
And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

‘-

11
Karthik DantuKarthik Dantu

• Operate on Bit Vectors
Operations applied bitwise

• All of the Properties of Boolean Algebra Apply

Generalized Boolean Algebra

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
10101010

‘-

12
Karthik DantuKarthik Dantu

• Operations &, |, ~, ^ available in C
Apply to any “integral” data type

long, int, short, char, unsigned
View arguments as bit vectors
Arguments applied bit-wise

• Examples (char data type)
~0x41 → 0xBE

~010000012 → 101111102
~0x00 → 0xFF

~000000002 → 111111112
0x69 & 0x55 → 0x41

011010012 & 010101012 → 010000012
0x69 | 0x55 → 0x7D

011010012 | 010101012 → 011111012

Bit-Level Operations in C

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

‘-

13
Karthik DantuKarthik Dantu

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

‘-

14
Karthik DantuKarthik Dantu

• Every integer type may have modifiers
• Those modifiers include signed and unsigned
• All unmodified integer types except char are signed
• char may be signed or unsigned
• Following are equivalent:

Integer Modifiers

int x;
signed int x;

long long x;
signed long long int x;

‘-

15
Karthik DantuKarthik Dantu

• Confusion in size has led to definition of explicitly sized integers
• Definitions are in <stdint.h>
• Exact width types are of the form intN_t
• They are exactly N bits wide – e.g., int32_t
• There are also unsigned equivalent types, which start with u:
e.g., unit32_t
• N can be 8, 16, 32, 64

Integers of Explicit Size

‘-

16
Karthik DantuKarthik Dantu

• sizeof() looks like a function but
it is not

• It is computed by the compiler
• sizeof() returns the size in bytes

of its argument, which can be:
A variable
An expression that is “like” a variable
A type

sizeof()

char str[32];
int matrix[2][3];

sizeof(int);
// 4
sizeof(str);
// 32
sizeof(matrix);
//24

‘-

17
Karthik DantuKarthik Dantu

• Function to examine memory
• Takes a memory address and

number of bytes
• Prints the hex value of the

bytes at that address

dump_mem()

int x=98303; // 0x17fff
dump_mem(&x, sizeof(x));

Output:
ff 7f 01 00

??

‘-

18
Karthik DantuKarthik Dantu

• Why is 98303 (0x17fff) represented by ff 7f 01 00?

• Answer is Endianness
• Words are organized into bytes in memory – but in what order?

• Big Endian – “big end” comes first. How we write.

• Little Endian – “little end” comes first. How x86 processors
represent integers

• NOTE: Cannot assume anything about byte ordering in C

Byte Ordering

‘-

19
Karthik DantuKarthik Dantu

char c = 0x80;
int i = c;
dump_mem(&i, sizeof(i));

Sign Extension

OUTPUT:
80 ff ff ff

‘-

20
Karthik DantuKarthik Dantu

• B&O 2.1, 2.2

Required readings

