

# Floating Point Numbers

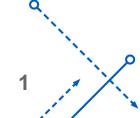
Karthik Dantu

Ethan Blanton

Computer Science and Engineering

University at Buffalo

kdantu@buffalo.edu





#### Administrivia

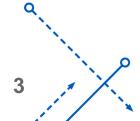
- Midterm: Oct 9<sup>th</sup> (Wednesday) in class
- PA2 out now
- gdb lab





# Department of Computer Science Today: Floating Point

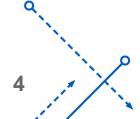
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary





# Department of Computer Science Fractional binary numbers

• What is 1011.101<sub>2</sub>?



# University at Buffalo Department of Computer Science nal Binary Numbers and Engineering

2<sup>i-1</sup> b<sub>i-1</sub> bi **b**2 **b**1 b-2 **b**-3 **b**-1 1/8

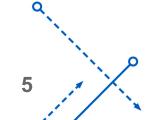
Representation

School of Engineering and Applied Sciences

• Bits to right of "binary point" represent fractional powers of 2  $\sum_{i=1}^{i} b_{i} b_{i} \times 2^{k}$ 

• Represents rational number: k=-j

k=-jKarthik Dantu





#### Department of Computer Science Fractional Binary Numbers: Examples

Value

Representation

$$5 \ 3/4 = 23/4$$
  $101.11_2 = 4 + 1 + 1/2 + 1/4$   
 $2 \ 7/8 = 23/8$   $10.111_2 = 2 + 1/2 + 1/4 + 1/8$   
 $1 \ 7/16 = 23/16$   $1.0111_2 = 1 + 1/4 + 1/8 + 1/16$ 

#### Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■ 
$$1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$$

• Use notation  $1.0 - \varepsilon$ 





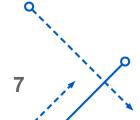
#### Representable Numbers

#### Limitation #1

- Can only exactly represent numbers of the form x/2<sup>k</sup>
  - Other rational numbers have repeating bit representations
  - Value Representation
    - 1/3 0.01010101[01]...<sub>2</sub>
    - **-** 1/5 **0.00110011[0011]**...2
    - **-** 1/10 0.000110011[0011]...2

#### • Limitation #2

- Just one setting of binary point within the w bits
  - Limited range of numbers (very small values? very large?)



# Department of Computer Science Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

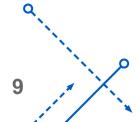




# **IEEE Floating Point**

#### IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
  - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor
- Driven by numerical concerns
  - Nice standards for rounding, overflow, underflow
  - Hard to make fast in hardware
    - Numerical analysts predominated over hardware designers in defining standard





### Floating Point Representation

Example:  $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$ 

#### Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
  - MSB s is sign bit s
  - exp field encodes E (but is not equal to E)
  - frac field encodes M (but is not equal to M)



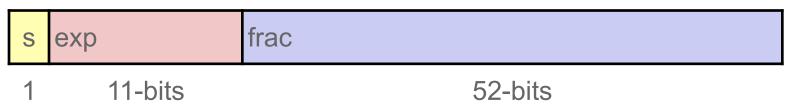


# **Precision options**

• Single precision: 32 bits  $\approx$  7 decimal digits,  $10^{\pm 38}$ 

| S | exp    | frac    |
|---|--------|---------|
| 1 | 8-bits | 23-bits |

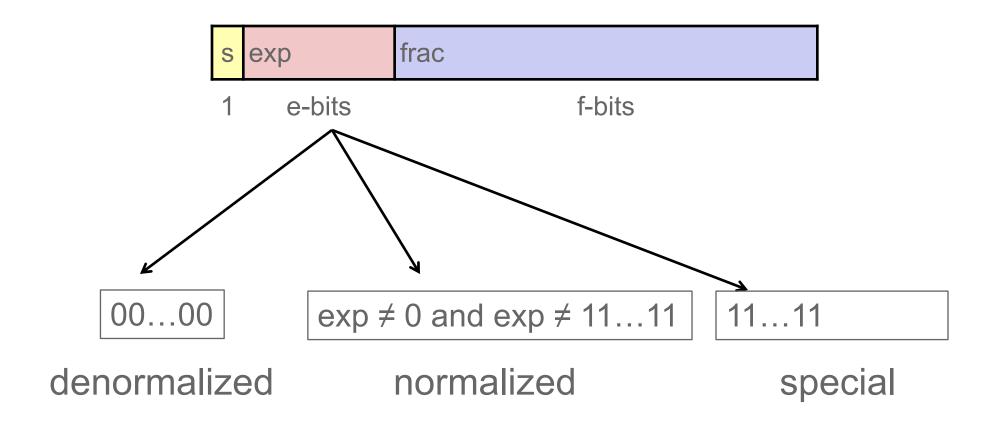
• Double precision: 64 bits  $\approx$  16 decimal digits,  $10^{\pm 308}$ 



Other formats: half precision, quad precision



#### Department of Computer Science Three "kinds" of floating point numbers





#### Department of Computer Science "Normalized" Values

 $v = (-1)^s M 2^E$ 

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = exp Bias
  - exp: unsigned value of exp field
  - Bias =  $2^{k-1}$  1, where k is number of exponent bits
    - Single precision: 127 (exp: 1...254, E: -126...127)
    - Double precision: 1023 (exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
  - xxx...x: bits of frac field
  - Minimum when frac=000...0 (M = 1.0)
  - Maximum when **frac**=111...1 (M =  $2.0 \varepsilon$ )
  - Get extra leading bit for "free"



# and Engineering School of Engineering and Applied Cormalized Encoding Example

 $v = (-1)^s M 2^e$ 

E = exp - Bias

- Value: float F = 15213.0;
  - $15213_{10} = 11101101101101_2$ =  $1.1101101101101_2 \times 2^{13}$
- Significand

$$M = 1.101101101_2$$
  
frac=  $101101101101_0000000000_2$ 

Exponent

$$E = 13$$
 $Bias = 127$ 
 $exp = 140 = 10001100_2$ 

- Result:
- 0
   10001100
   1101101101101000000000

   s
   exp
   frac

   Karthik Dantu



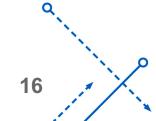
#### **Denormalized Values**

$$v = (-1)^{s} M 2^{E}$$
  
 $E = 1 - Bias$ 

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of exp Bias) (why?)
- Significand coded with implied leading 0: M = 0.xxx...x2
  - xxx...x: bits of frac
- Cases
  - exp = 000...0, frac = 000...0
    - Represents zero value
    - Note distinct values: +0 and –0 (why?)
  - exp = 000...0, frac \( \neq \) 000...0
    - Numbers closest to 0.0
    - Equispaced



- Condition: **exp** = **111**...**1**
- Case: exp = 111...1, frac = 000...0
  - Represents value ∞ (infinity)
  - Operation that overflows
  - Both positive and negative
  - E.g.,  $1.0/0.0 = -1.0/-0.0 = +\infty$ ,  $1.0/-0.0 = -\infty$
- Case: exp = 111...1,  $frac \neq 000...0$ 
  - Not-a-Number (NaN)
  - Represents case when no numeric value can be determined
  - E.g., sqrt(-1),  $\infty \infty$ ,  $\infty \times 0$



 $v = (-1)^s M 2^E$ 

= exp - Bias

Bias =  $2^{k-1} - 1 = 127$ 

float: 0xC0A00000

binary:



8-bits

23-bits

| _ |  |
|---|--|
|   |  |
| _ |  |

$$M =$$

| <b>v</b> = | (-1 | . <b>)</b> s | M | <b>2</b> <sup>E</sup> | = |
|------------|-----|--------------|---|-----------------------|---|
|------------|-----|--------------|---|-----------------------|---|

| 0 | 0                                                        | 0000                                                                                                |
|---|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1 | 1                                                        | 0001                                                                                                |
| 2 | 2                                                        | 0010                                                                                                |
| 3 | 3                                                        | 0011                                                                                                |
| 4 | 4                                                        | 0100                                                                                                |
| 5 | 5                                                        | 0101                                                                                                |
| 6 | 6                                                        | 0110                                                                                                |
| 7 | 7                                                        | 0111                                                                                                |
| 8 | 8                                                        | 1000                                                                                                |
| 9 | 9                                                        | 1001                                                                                                |
| A | 10                                                       | 1010                                                                                                |
| В |                                                          | 1011                                                                                                |
| С |                                                          | 1100                                                                                                |
| D |                                                          | 1101                                                                                                |
| E |                                                          | 1110                                                                                                |
| F | 15                                                       | 1111                                                                                                |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>A<br>B<br>C | 1 1<br>2 2<br>3 3<br>4 4<br>5 5<br>6 6<br>7 7<br>8 8<br>9 9<br>A 10<br>B 11<br>C 12<br>D 13<br>E 14 |



 $v = (-1)^s M 2^E$ 

E = exp - Bias

float: 0xC0A00000

| 1 | 1000 0001 | 010 0   | 0000 | 0000 | 0000 | 0000 | 0000 |
|---|-----------|---------|------|------|------|------|------|
| 1 | 8-bits    | 23-bits |      |      |      |      |      |

E =

S =

M = 1.

 $v = (-1)^s M 2^E =$ 

# Het Decimary Net Decimary 0 0 0000 1 1 0001 2 2 0010 3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011

12

13

14

15

1100

1101

1110

1111



 $v = (-1)^{s} M 2^{E}$ 

E = exp - Bias

float: 0xC0A00000

Bias = 
$$2^{k-1} - 1 = 127$$

| 1 | 1000 0001 | 010 | 0000 | 0000 | 0000  | 0000 | 0000 |  |
|---|-----------|-----|------|------|-------|------|------|--|
| 1 | 8-bits    |     |      | 23   | -bits |      |      |  |

$$E = exp - Bias = 129 - 127 = 2$$
 (decimal)

S = 1 -> negative number

$$M = 1.010 0000 0000 0000 0000 0000$$
  
= 1 + 1/4 = 1.25

$$v = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$$

# Hex Decimany

| 0                | 0                | 0000 |
|------------------|------------------|------|
| 1                | 1                | 0001 |
| 1<br>2<br>3      | 2 3              | 0010 |
| 3                | 3                | 0011 |
| 4                | 4                | 0100 |
| 5                | 5                | 0101 |
| 5<br>6<br>7<br>8 | 4<br>5<br>6<br>7 | 0110 |
| 7                | 7                | 0111 |
| 8                | 8                | 1000 |
|                  | 9                | 1001 |
| A                | 10               | 1010 |
| В                | 11               | 1011 |
| С                | 12               | 1100 |
| D                | 13<br>14         | 1101 |
| E                |                  | 1110 |
| F                | 15               | 1111 |





 $v = (-1)^s M 2^E$ 

E = 1 - Bias

float: 0x001C0000

| 0 | 0000 0000 | 001 1100 | 0000 | 0000 | 0000 | 0000 |
|---|-----------|----------|------|------|------|------|
| 1 | 8-bits    | 23-bits  |      |      |      |      |

E =

S =

M = 0.

 $v = (-1)^s M 2^E =$ 

#### 

 $v = (-1)^s M 2^E$ 

E = 1 - Bias

float: 0x001C0000

Bias = 
$$2^{k-1} - 1 = 127$$

| 0 | 0000 0000 | 001 | 1100 | 0000 | 0000  | 0000 | 0000 |  |
|---|-----------|-----|------|------|-------|------|------|--|
| 1 | 8-bits    |     |      | 23   | -bits |      |      |  |

$$E = 1 - Bias = 1 - 127 = -126$$
 (decimal)

S = 0 -> positive number

$$M = 0.001 1100 0000 0000 0000 0000$$

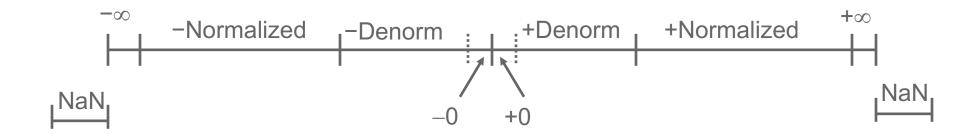
$$= 1/8 + 1/16 + 1/32 = 7/32 = 7*2^{-5}$$

$$v = (-1)^s M 2^E = (-1)^0 * 7*2^{-5} * 2^{-126} = 7*2^{-131}$$

 $\approx 2.571393892 \times 10^{-39}$ 

#### 

# and Engineering Applied Stances Stand Applied Stances Standard S



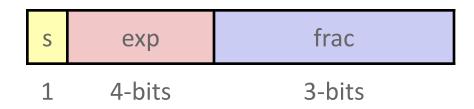
#### Department of Computer Science Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary





# Department of Computer Science Tiny Floating Point Example



- 8-bit Floating Point Representation
  - the sign bit is in the most significant bit
  - the next four bits are the exp, with a bias of 7
  - the last three bits are the frac

- Same general form as IEEE Format
  - normalized, denormalized
  - representation of 0, NaN, infinity





# Department of Computer Science Dynamic Range (s=0 only)

School of Engineering and Applied Sciences

|              | s   | ехр  | frac | E   | Value                                       |   |
|--------------|-----|------|------|-----|---------------------------------------------|---|
|              | 0   | 0000 | 000  | -6  | 0                                           | r |
|              | 0   | 0000 | 001  | -6  | 1/8*1/64 = 1/512 closest to zero            | ' |
| Denormalized | 0   | 0000 | 010  | -6  | $2/8*1/64 = 2/512$ $(-1)^{0}(0+1/4)*2^{-6}$ |   |
| numbers      | ••• |      |      |     |                                             |   |
|              | 0   | 0000 | 110  | -6  | 6/8*1/64 = 6/512                            |   |
|              | 0   | 0000 | 111  | -6  | 7/8*1/64 = 7/512 largest denorm             |   |
|              | 0   | 0001 | 000  | -6  | 8/8*1/64 = 8/512 smallest norm              |   |
|              | 0   | 0001 | 001  | -6  | $9/8*1/64 = 9/512$ $(-1)^{0}(1+1/8)*2^{-6}$ |   |
|              | ••• |      |      |     |                                             |   |
|              | 0   | 0110 | 110  | -1  | 14/8*1/2 = 14/16                            |   |
|              | 0   | 0110 | 111  | -1  | 15/8*1/2 = 15/16 closest to 1 below         |   |
| Normalized   | 0   | 0111 | 000  | 0   | 8/8*1 = 1                                   |   |
| numbers      | 0   | 0111 | 001  | 0   | 9/8*1 = 9/8 closest to 1 above              |   |
|              | 0   | 0111 | 010  | 0   | 10/8*1 = 10/8                               |   |
|              | ••• |      |      |     |                                             |   |
|              | 0   | 1110 | 110  | 7   | 14/8*128 = 224                              |   |
|              | 0   | 1110 | 111  | 7   | 15/8*128 = 240   largest norm               |   |
|              | 0   | 1111 | 000  | n/a | inf                                         |   |
|              |     |      |      |     |                                             |   |

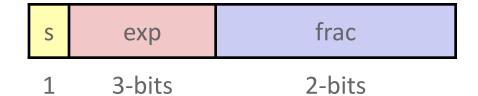
 $v = (-1)^s M 2^E$ norm: E = exp - Biasdenorm: E = 1 - Bias



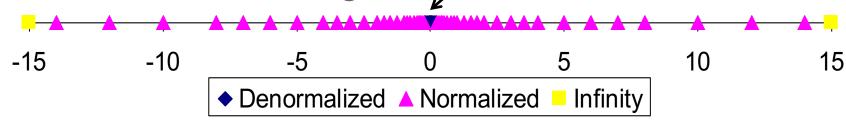


#### Distribution of Values

- 6-bit IEEE-like format
  - e = 3 exponent bits
  - f = 2 fraction bits
  - Bias is  $2^{3-1}-1=3$



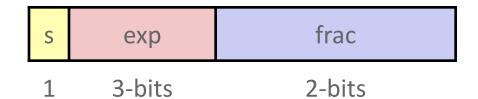
Notice how the distribution gets denser toward zero.

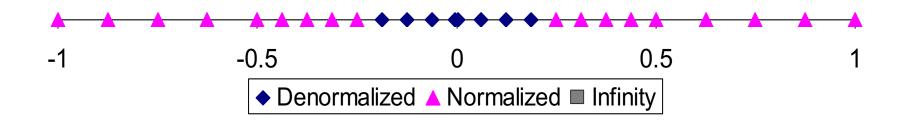




#### Distribution of Values (close-up view)

- 6-bit IEEE-like format
  - e = 3 exponent bits
  - f = 2 fraction bits
  - Bias is 3





#### Department of Computer Science Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
  - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
  - Must first compare sign bits
  - Must consider -0 = 0
  - NaNs problematic
    - Will be greater than any other values
    - What should comparison yield? The answer is complicated.
  - Otherwise OK
    - Denorm vs. normalized
    - Normalized vs. infinity

#### Floating Point Operations: Basic Idea

• 
$$x +_f y = Round(x + y)$$

• 
$$x \times_f y = Round(x \times y)$$

- Basic idea
  - First compute exact result
  - Make it fit into desired precision
    - Possibly overflow if exponent too large
    - Possibly round to fit into frac



## Rounding

Rounding Modes (illustrate with \$ rounding)

<sup>\*</sup>Round to nearest, but if half-way in-between then round to nearest even



#### Closer Look at Round-To-Even

#### Default Rounding Mode

- Hard to get any other kind without dropping into assembly
  - C99 has support for rounding mode management
- All others are statistically biased
  - Sum of set of positive numbers will consistently be over- or underestimated

#### Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
  - Round so that least significant digit is even
- E.g., round to nearest hundredth

| 7.8949999     | 7.89 | (Less than half way)    |  |  |  |  |
|---------------|------|-------------------------|--|--|--|--|
| 7.8950001     | 7.90 | (Greater than half way) |  |  |  |  |
| 7.8950000     | 7.90 | (Half way—round up)     |  |  |  |  |
| 7.8850000     | 7.88 | (Half way—round down)   |  |  |  |  |
| Karthik Dantu |      |                         |  |  |  |  |

# Rounding Binary Numbers

#### Binary Fractional Numbers

- "Even" when least significant bit is o
- "Half way" when bits to right of rounding position = 100...2

#### Examples

• Round to nearest 1/4 (2 bits right of binary point)

|        |           | ,                     | • • •       |               |
|--------|-----------|-----------------------|-------------|---------------|
| Value  | Binary    | Rounded               | Action      | Rounded Value |
| 2 3/32 | 10.000112 | 10.002                | (<1/2—down) | 2             |
| 2 3/16 | 10.001102 | 10.012                | (>1/2—up)   | 2 1/4         |
| 2 7/8  | 10.111002 | 11.0 <mark>0</mark> 2 | ( 1/2—up)   | 3             |
| 2 5/8  | 10.101002 | 10.1 <mark>0</mark> 2 | ( 1/2—down) | 2 1/2         |
|        |           |                       |             |               |

# Rounding

#### 1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

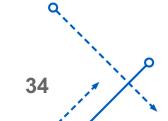
#### Round up conditions

- Round = 1, Sticky =  $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

| Fraction  | GRS         | Incr? Rounded         |                 |
|-----------|-------------|-----------------------|-----------------|
| 1.0000000 | 000         | N                     | 1.000           |
| 1.1010000 | 100         | N                     | 1.101           |
| 1.0001000 | 010         | N                     | 1.000           |
| 1.0011000 | 110         | Y                     | 1.010           |
| 1.0001010 | 011         | Y                     | 1.001           |
| 1.1111100 | 1 <b>11</b> | <b>y</b><br>Karthik [ | 10.000<br>Dantu |

# Department of Computer Science FP Multiplication

- $(-1)^{s1}$  M1  $2^{E1}$  x  $(-1)^{s2}$  M2  $2^{E2}$
- Exact Result: (-1)<sup>s</sup> M 2<sup>E</sup>
  - Sign s: s1 ^ s2
  - Significand M: M1 x M2
  - Exponent E: E1 + E2
- Fixing
  - If M ≥ 2, shift M right, increment E
  - If E out of range, overflow
  - Round M to fit frac precision
- Implementation
  4 bit significand: 1.010\*2² x 1.110\*2³ = 10.0011\*2⁵
  Biggest chore is multiplying significands 1.001\*2⁶



# Floating Point Addition

- $(-1)^{s1}$  M1  $2^{E1}$  +  $(-1)^{s2}$  M2  $2^{E2}$ 
  - •Assume E1 > E2
- Exact Result: (-1)s M 2E
  - •Sign s, significand M:
    - Result of signed align & add
  - Exponent E: E1

(-1)<sup>s1</sup> M1

Get binary points lined up

(-1)<sup>s2</sup> M2

- Fixing
  - •If  $M \ge 2$ , shift M right, increment  $E^{(-1)^s M}$
  - •if M < 1, shift M left k positions, decrement E by k
  - Overflow if E out of range
  - Round M to fit frac precision

$$1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}$$
  
=  $10.0110 * 2^{3} = 1.00110 * 2^{4} = 1.010 * 2^{4}$ 



#### Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

- But may generate infinity or NaN

Commutative?

Yes

Associative?

No

Overflow and inexactness of rounding

-(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

• 0 is additive identity?

Yes

Every element has additive inverse?

**Almost** 

- Yes, except for infinities & NaNs

Monotonicity

•  $a \ge b \Rightarrow a+c \ge b+c$ ?

- Except for infinities & NaNs

**Almost** 

#### Mathematical Properties of FP Mult

#### Compare to Commutative Ring

- Closed under multiplication?
  - But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?
  - Possibility of overflow, inexactness of rounding
  - Ex: (1e20\*1e20)\*1e-20=inf, 1e20\*(1e20\*1e-20)=1e20
- 1 is multiplicative identity?
- Multiplication distributes over addition?
  - Possibility of overflow, inexactness of rounding
  - -1e20\*(1e20-1e20)=0.0, 1e20\*1e20 1e20\*1e20 = NaN
- Monotonicity
  - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c?$ 
    - Except for infinities & NaNs

**Almost** 

Yes

Yes

No

Yes

