
CSE 220: Systems Programming
Final Review

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



The Compiler and Toolchain

The “C compiler” is actually a chain of tools
We invoke the compiler driver
The preprocessor transforms the source code
The compiler turns C into assembly language
The assembler turns assembly language into machine code
in object files
The linker links object files into an executable

©2019 Ethan Blanton / CSE 220: Systems Programming



Compiler Optimization
Optimizing compilers must be correct first, then efficient
Write compiler-friendly code

Avoid optimization-blockers like function calls and
references to non-local memory

Compiler optimization is based on static information
Tune innermost loops first
Common code optimizations:

Code motion
Reduction in strength
Reuse of subexpressions
Loop unrolling for superscalar processors

Superscalar processors can work on more than one
instruction per clock cycle

©2019 Ethan Blanton / CSE 220: Systems Programming



Dynamic Memory Allocation (1)
Dynamic memory allocators provide memory management
tools to the programmer at run time
This memory is the heap
Heap allocators optimize for performance:

Throughput
Overhead

Overhead comes in the form of internal and external
fragmentation
Placement policies can trade off throughput for overhead
Explicit free lists provide higher throughput by using data
structures to track available heap blocks

Particularly when the heap is very large or almost full
More complex data structures (segregated or sorted free
lists, e.g.) can make certain operations faster

©2019 Ethan Blanton / CSE 220: Systems Programming



Caching
The speed gap between CPU, memory and mass storage
continues to widen
Well-written programs exhibit a property called locality
Memory hierarchies based on caching close the gap by
exploiting locality
Each level of the hierarchy is much smaller and much more
expensive per byte than the one below it
Cache misses occur when cache is too small, locality is
violated, or implementation has limitations
Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)

©2019 Ethan Blanton / CSE 220: Systems Programming



Virtual Memory
Virtual memory:

uses a memory management unit
allows the CPU to operate in a virtual address space that
may be different from the physical address space
the MMU translates virtual addresses to physical addresses

Paging is a common model for virtual memory.
Paged systems break both address spaces into pages.
Pages can be mapped individually between virtual and
physical addresses.
Page tables allow the MMU to translate addresses.
Page faults bring mapped but unallocated pages into
memory.

©2019 Ethan Blanton / CSE 220: Systems Programming



Processes, Threads, and Concurrency

Logical control flows are execution steps through programs.
Concurrency is multiple logical control flows at one time.
Multiprocessing versus Multitasking
Processes versus Threads

©2019 Ethan Blanton / CSE 220: Systems Programming



Races and Synchronization
A race is a situation where program correctness depends
on the order of operations in concurrent flows.
Data races are races involving modification of data.
Synchronization is the deliberate ordering of events in a
program.
A critical section is a region of code that must be accessed
by at most one concurrent flow at a time.
Progress graphs visualize concurrent flows.
Synchronization primitives:

Atomic operations
Mutexes
Semaphores
Condition variables

Deadlock is a program error caused by synchronization.
©2019 Ethan Blanton / CSE 220: Systems Programming



POSIX Threads and Synchronization

The POSIX threads (pthreads) API provides a thread
abstraction on Unix
POSIX provides many synchronization primitives:

Mutexes
Semaphores
Condition variables
Thread joining

CS:APP covers semaphores in detail

©2019 Ethan Blanton / CSE 220: Systems Programming



System I/O
POSIX files are a sequence of bytes
Devices on POSIX systems are represented as special files
Unix I/O exposes files and devices via a simple interface:

open(), close
read(), write()
lseek()

Unix I/O is very fast, but rather primitive
Small reads are just as expensive as large reads
No concept of records/lines/etc.

Open files are represented by file descriptors which
represent file table entries in the kernel
Standard I/O provides buffered access to Unix I/O
POSIX makes no distinction between file types, but
standard I/O provides certain facilities for text files

©2019 Ethan Blanton / CSE 220: Systems Programming



Exceptions
Exceptions are a transfer of control to the OS kernel in
response to some event
Interrupts, or asynchronous exceptions, come from external
to the processor
Synchronous exceptions are caused by processor
operations
System calls are traps (a form of synchronous exception)
into the kernel
Page faults are faults that cause the kernel to either fix up a
memory access or notify the process of error
Signals are pure software exceptions

©2019 Ethan Blanton / CSE 220: Systems Programming



Final Exam

The final exam is Wednesday, December 11 at 3:30 PM

Locations:
Section A: Davis 101
Section B: Knox 109

Bring your student ID and a writing implement

Closed book, closed notes, closed neighbor

Expect a format similar to the midterm, but longer

©2019 Ethan Blanton / CSE 220: Systems Programming



License

Copyright 2019 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2019 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

