CSE 220: Systems Programming

Final Review

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



-
The Compiler and Toolchain

m The “C compiler” is actually a chain of tools

We invoke the compiler driver

m The preprocessor transforms the source code

m The compiler turns C into assembly language

m The assembler turns assembly language into machine code
in object files

The linker links object files into an executable

©2019 Ethan Blanton / CSE 220: Systems Programming



Compiler Optimization
m Optimizing compilers must be correct first, then efficient
m Write compiler-friendly code
m Avoid optimization-blockers like function calls and
references to non-local memory
m Compiler optimization is based on static information
m Tune innermost loops first
m Common code optimizations:
Code motion
Reduction in strength
Reuse of subexpressions
Loop unrolling for superscalar processors
m Superscalar processors can work on more than one
instruction per clock cycle

tﬁmﬁversityat Buffalo The iversi lew Yor ©2019 Ethan Blanton / CSE 220: Systems Programming



Dynamic Memory Allocation (1)
m Dynamic memory allocators provide memory management
tools to the programmer at run time
m This memory is the heap
m Heap allocators optimize for performance:
m Throughput
m Overhead
m Overhead comes in the form of internal and external
fragmentation
m Placement policies can trade off throughput for overhead
m Explicit free lists provide higher throughput by using data
structures to track available heap blocks
m Particularly when the heap is very large or almost full
m More complex data structures (segregated or sorted free
lists, e.g.) can make certain operations faster

tﬁmﬁversityat Buffalo The state for ©2019 Ethan Blanton / CSE 220: Systems Programming



____________________________________
Caching

m The speed gap between CPU, memory and mass storage
continues to widen

m Well-written programs exhibit a property called locality

m Memory hierarchies based on caching close the gap by
exploiting locality

m Each level of the hierarchy is much smaller and much more
expensive per byte than the one below it

m Cache misses occur when cache is too small, locality is
violated, or implementation has limitations

m Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)

tﬁl’niversityat Buffalo The state sity of Ney ©2019 Ethan Blanton / CSE 220: Systems Programming




-
Virtual Memory

m Virtual memory:

B uses a memory management unit

m allows the CPU to operate in a virfual address space that
may be different from the physical address space

m the MMU translates virtual addresses to physical addresses

m Paging is a common model for virtual memory.
m Paged systems break both address spaces into pages.

m Pages can be mapped individually between virtual and
physical addresses.

m Page tables allow the MMU to translate addresses.

m Page faults bring mapped but unallocated pages into
memory.

tﬁmﬁversityat Buffalo The sta for ©2019 Ethan Blanton / CSE 220: Systems Programming



-
Processes, Threads, and Concurrency

m Logical control flows are execution steps through programs.
m Concurrency is multiple logical control flows at one time.

m Multiprocessing versus Multitasking

m Processes versus [hreads

téuniversityat Buffalo The state sity of Ney ©2019 Ethan Blanton / CSE 220: Systems Programming



Races and Synchronization

m A race is a situation where program correctness depends
on the order of operations in concurrent flows.
m Data races are races involving modification of data.
m Synchronization is the deliberate ordering of events in a
program.
m A critical section is a region of code that must be accessed
by at most one concurrent flow at a time.
m Progress graphs visualize concurrent flows.
m Synchronization primitives:
m Atomic operations
m Mutexes
m Semaphores
m Condition variables
m Deadlock is a program error caused by synchronization.

©2019 Ethan Blanton / CSE 220: Systems Programming




e ——
POSIX Threads and Synchronization

m The POSIX threads (pthreads) API provides a thread
abstraction on Unix
m POSIX provides many synchronization primitives:

m Mutexes

m Semaphores

m Condition variables
m Thread joining

m CS:APP covers semaphores in detail

©2019 Ethan Blanton / CSE 220: Systems Programming



-
System 1/O

m POSIX files are a sequence of bytes
m Devices on POSIX systems are represented as special files
m Unix /O exposes files and devices via a simple interface:
m open(), close
m read(), write()
m lseek()
m Unix I/O is very fast, but rather primitive
m Small reads are just as expensive as large reads
m No concept of records/lines/etc.
m Open files are represented by file descriptors which
represent file table entries in the kernel
m Standard I/O provides buffered access to Unix I/O
m POSIX makes no distinction between file types, but
standard I/O provides certain facilities for text files

©2019 Ethan Blanton / CSE 220: Systems Programming



-
Exceptions

m Exceptions are a transfer of control to the OS kernel in
response to some event

m Interrupts, or asynchronous exceptions, come from external
to the processor

m Synchronous exceptions are caused by processor
operations

m System calls are traps (a form of synchronous exception)
into the kernel

m Page faults are faulis that cause the kernel to either fix up a
memory access or notify the process of error

m Signals are pure software exceptions

téuniversityat Buffalo The iversi lew Yor ©2019 Ethan Blanton / CSE 220: Systems Programming



T
Final Exam

The final exam is \Wednesday, December 11 at 3:30 PM

Locations:
m Section A: Davis 101
m Section B: Knox 109

Bring your student ID and a writing implement
Closed book, closed notes, closed neighbor

Expect a format similar to the midterm, but longer

©2019 Ethan Blanton / CSE 220: Systems Programming



e
License

Copyright 2019 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2019 Ethan Blanton / CSE 220: Systems Programming


https://www.cse.buffalo.edu/~eblanton/

