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* Processors do only one thing:

* From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

* This sequence is the CPU’s control flow (or flow of control)
Physical control flow

<startup>

inStl

instz
Time Inst;
inst,
<shutdown>
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* Up to now: two mechanisms for changing control flow:
* Jumps and branches
e Call and return
React to changes in program state

* |[nsufficient for a useful system:
Difficult to react to changes in system state
e Data arrives from a disk or a network adapter
* Instruction divides by zero
e User hits Ctrl-C at the keyboard
* System timer expires

e System needs mechanisms for “exceptional control flow”
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* Exists at all levels of a computer system

 Low level mechanisms
* 1. Exceptions

— Change in control flow in response to a system event
(i.e., change in system state)

— Implemented using combination of hardware and OS software

* Higher level mechanisms
* 2. Process context switch
— Implemented by OS software and hardware timer

3. Signals

— Implemented by OS software
* 4. Nonlocal jumps: setjmp () and Longjmp ()

— Implemented by C runtime library
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* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
e Kernel is the memory-resident part of the OS

* Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Ctrl-C

Event ——— |_current Exception ,
|_next Exception processing
by exception handler

<

* Return to |_current
* Return to |_next
* Abort A
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Exception Tables

O
Exception
numbers
Code for * Each type of event has a
exception handler 0 unique exception number k
_If_x;cleption Code for
viapie exception handler 1
?_ * k =index into exception table
] Code for (a.k.a. interrupt vector)
| | exception handler 2
n-1
—  Handler k is called each time
Code for exception k occurs
exception handler n-1
q\
6 .« X
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(partial) Taxonomy

ECF

Asynchronous

Interrupts

Synchronous

Traps

Faults

Aborts
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* Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
 Handler returns to “next” instruction

* Examples:

* Timer interrupt

— Every few ms, an external timer chip triggers an interrupt

— Used by the kernel to take back control from user programs
* |/O interrupt from external device

— Hitting Ctrl-C at the keyboard

— Arrival of a packet from a network
— Arrival of data from a disk Q
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e Caused by events that occur as a result of executing
an instruction:
* Traps
— Intentional, set program up to “trip the trap” and do something
— Examples: system calls, gdb breakpoints
— Returns control to “next” instruction

* Faults
— Unintentional but possibly recoverable

— Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

— Either re-executes faulting (“current”) instruction or aborts
* Aborts

— Unintentional and unrecoverable Q
— Examples: illegal instruction, parity error, machine check N
— Aborts current program N
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m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process
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e Usercalls: open (filename,

options)

e Calls __ open function, which invokes system call instruction syscall

e5d79:
e5d7e:
e5d80:

e5dfa:

00000000000e5d70 <__open>:

b8 02 00 00 00
0f 05
48 3d 01 fo ff ff

c3

mov $0x2,%eax # open 1s syscall #2

syscall

cmp  $OXTEfffffffffffo01,%rax

retq

# Return value 1in %rax

syscally
cmp

Exception

y

y

N Open flle
Returns

$rax contains syscall number

Other arguments in $rdi,
$rsi, 3rdx, $rl10, 3r8, 3r9
Return value in $rax

Negative value is an error

corresponding to negative
errno

System Call Example: Opening File
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e Usercalls: open (filename, options)

e Calls __ open function, which invokes system call instruction syscall

000000

e5d79: all #2

ebd7e: in %rax

e5d80:

ebdfa:

e call number
srdi,
,%5r8,%r9

syscall
cmp .
Returns m Negative value is an error 2.
v corresponding to negative
errno 12 p A
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int a[1l0007];
* User writes to memory location main ()
{
* That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7 : c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10

Exception: page fault

mov| % >
\l Copy page from
Return and disk to memory

reexecute movl

v



University at Buffalo

188 Deparment of Computersience - Fault Example: Invalid Memory Reference

School of Engineering and Applied Sciences

O

int a[1l0007];

main ()

{

a[5000] = 13;
}
80483b7: c7 05 60 e3 04 08 0d movl $S0xd, 0x804e360
l Exception: page fault
movl >
Detect invalid address
v » Signal process
* Sends SIGSEGV signal to user process Q
» User process exits with “segmentation fault”
14« X
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Handled in user process — o

ECF

Asynchronous

Synchronous

Interrupts Traps Faults Aborts

Signals
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Login shell
Child

@ @ Note: you can view the
hierarchy using the Linux

pstree command
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* Ashell is an application program that runs programs on behalf of
the user.

e sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
« csh/tcsh BSD Unix C shell
* bash “Bourne-Again” Shell (default Linux shell)

» Simple shell

« Described in the textbook, starting at p. 753
* Implementation of a very elementary shell

* Purpose
- Understand what happens when you type commands
- Understand use and operation of process control operations
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linux> ./shellex
> /bin/ls -1 csapp.c Mustgive full pathnames for programs

-rw-r—--r—-— 1 bryant users 23053 Jun 15 2015 csapp.cC

> /bin/ps
PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32017 pts/2 00:00:00 shellex

32019 pts/2 00:00:00 ps

> /bin/sleep 10 & Run program in background
32031 /bin/sleep 10 &
> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32024 pts/2 00:00:00 emacs

32030 pts/2 00:00:00 shellex

32031 pts/2 00:00:00 sleep Sleep is running
32033 pts/2 00:00:00 ps in background

> quit
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* Shell designed to run indefinitely

* Should not accumulate unneeded resources
— Memory
— Child processes
— File descriptors

* Our example shell correctly waits for and reaps foreground
jobs

* But what about background jobs?
* Will become zombies when they terminate
* Will never be reaped because shell (typically) will not terminate
* Will create a memory leak that could run the kernel out of memory
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e Solution: Exceptional control flow

* The kernel will interrupt regular processing to alert us when a
background process completes

* In Unix, the alert mechanism is called a signal
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Signals

* Asignalis a small message that notifies a process that an
event of some type has occurred in the system
* Akin to exceptions and interrupts

e Sent from the kernel (sometimes at the request of another
process) to a process

e Signal type is identified by small integer ID’s (1-30)
* Only information in a signal is its ID and the fact that it arrived

ID Name
2 SIGINT
9 SIGKILL

11 SIGSEG
Vv

14 SIGALR
M

17 SIGCHL
D

Default Action
Terminate
Terminate

Terminate
Terminate

Ignore

Corresponding Event
User typed ctrl-c
Kill program (cannot override or

ignore)
Segmentation violation

Timer signal

Child stopped or terminated
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» Kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination
process

* Kernel sends a signal for one of the following reasons:

* Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

* Another process has invoked the kill system call to
explicitly request the kernel to send a signal to the destination
process

\
N
A
A Y
\\
22« A
¢ N
/, b
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Signal Concepts: Sending a Signal

O
User level
Process B
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
Pending for C Blocked for C Y
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User level
Process B

Process C
@)
@
>
Q.
w
ol kernel
O
Pending for A Blocked for A Q
A ending for B Blocked for B
Pending for C Blocked for C b4 .
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O

User level
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
1| Pending for C Blocked for C s
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O

User level
Process B
Process A
kernel
Blocked for A Q
J Blocked for B
1 ending for C Blocked for C 6«
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O
User level
Process B
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
0] Pending for C Blocked for C .,
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* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
* Ignore the signal (do nothing)
e Terminate the process (with optional core dump)

e Catch the signal by executing a user-level function called signal
handler

— Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process L 4 to signal handler
Inext ' (3) Signal
handler runs Q
(4) Signal handler
returns to
next instruction 28 .« A
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* Assignal is pending if sent but not yet received
* There can be at most one pending signal of any particular type

* Important: Signals are not queued

— If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

* A process can block the receipt of certain signals

* Blocked signals can be delivered, but will not be received until the
signal is unblocked

e A pending signal is received at most once Q
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* Kernel maintains pending and blocked bit vectors
in the context of each process

* pending: represents the set of pending signhals

— Kernel sets bit k in pending when a signal of type k is delivered
— Kernel clears bit k in pending when a signal of type k is received

* blocked: represents the set of blocked signals

— Can be set and cleared by using the sigprocmask function
— Also referred to as the signal mask.



University at Buffalo

3| Department of Computer cince Signal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O
User level
Process A
O
Q Process C
2
E’
// kernel
/endlng for A Blocked for A Q
N\ _Sending for B Blocked for B
1| Pending for C Blocked for C YIS
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e /bin/kill program

sends arbitrary signal  linux> ./forks 16
Childl: pid=24818 pgrp=24817
to a process or process Child2: pid=24819 pgrp=24817

grOUp linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
* Examples 24818 pts/2 _ 00:00:02 forks
. . 24819 pts/2 00:00:02 forks
* /bin/kill -9 24820 gts/z 00:00:00 ps
24818 linux> /bin/kill -9 -24817
Send SIGKILL to process 24818  linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tecsh
e /bin/kill -9 - 24823 pts/2  00:00:00 ps
24817 linux>
Send SIGKILL to every process in o‘\\
process group 24817 \\
32 « A
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* Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

* SIGINT — default action is to terminate each process
* SIGTSTP — default action is to stop (suspend) each process

pid=20

id=40
pgid=20 p:

pgid=40

pid=21 pid=22 Q,
pgid=20 pgid=20 s

Foreground A
process group 20 p .



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
PID TTY
27699 pts/8
28107 pts/8
28108 pts/8
28109 pts/8
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
PID TTY
27699 pts/8
28110 pts/8

STAT

STAT
Ss
R+

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./forks
./forks
psS w

COMMAND
-tcsh
pPsS W

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details
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e Suppose kernel is returning from an exception
handler and is ready to pass control to process p
|
Process q I Process p
:
: user code
: kernel code } context switch
. |
Time : user code
: kernel code } context switch
|
: user code
|
|
q\
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* Suppose kernel is returning from an exception handler and
is ready to pass control to process p

* Kernel computes pnb = pending & ~blocked
* The set of pending nonblocked signals for process p

If (onb == 0)

* Pass control to next instruction in the logical flow for p

e Else

* Choose least nonzero bit k in pnb and force process p to receive
signal k

* The receipt of the signal triggers some action by p
* Repeat for all nonzero k in pnb
e Pass control to next instruction in logical flow for p .
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* Each signal type has a predefined default action, which is one of:
* The process terminates
* The process stops until restarted by a SIGCONT signal
* The process ignores the signal
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* The signal function modifies the default action associated
with the receipt of sighal signum:

* handler t *signal(int signum, handler t
*handler)

* Different values for handler:
* SIG_IGN: ignore signals of type signum
» SIG_DFL: revert to the default action on receipt of signals of type
signum

* Otherwise, handler is the address of a user-level signal handler
— Called when process receives signal of type signum
— Referred to as “installing” the handler
— Executing handler is called “catching” or “handling” the signal

— When the handler executes its return statement, control passes back to
instruction in the control flow of the process that was interrupted by
receipt of the signal
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{

int

void sigint handler (int sig) /* SIGINT handler */

printf ("So you think you can stop the bomb with ctrl-c,
sleep(2);

printf ("Well...");

fflush (stdout) ;

sleep(1l);

printf ("OK. :-)\n");

ex1it (0) ;

main (int argc, char** argv)
/* Install the SIGINT handler */
1f (signal (SIGINT, sigint handler) == SIG ERR)

unix error ("signal error");

/* Wait for the receipt of a signal */
pause () ;

return 0;

do you?\n") ;

sigint.c
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* Implicit blocking mechanism

e Kernel blocks any pending signals of type currently being handled.
 E.g., ASIGINT handler can’t be interrupted by another SIGINT

* Explicit blocking and unblocking mechanism
e sigprocmask function

e Supporting functions
* sigemptyset — Create empty set
e sigfillset —Add every signal number to set
* sigaddset —Add signal number to set
 sigdelset — Delete signal number from set
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sigset t mask, prev mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG BLOCK, &mask, &prev mask);

E /* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG SETMASK, &prev _mask, NULL);
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* Signals provide process-level exception handling
e Can generate from user programs
* Can define effect by declaring signal handler
* Be very careful when writing signal handlers

* Nonlocal jumps provide exceptional control flow
within process

e Within constraints of stack discipline



