University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Exceptions

Karthik Dantu
Ethan Blanton
Computer Science and Engineering

University at Buffalo
kdantu@buffalo.edu

University at Buffalo
Department of Computer Science

?c?o(cill oEQggirjgﬁgeﬂdrlgplied Sciences C O n t rO I F I O W

* Processors do only one thing:

* From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

* This sequence is the CPU’s control flow (or flow of control)
Physical control flow

<startup>

inStl

instz
Time Inst;
inst,
<shutdown>

University at Buffalo
Department of Computer Science

and Engincering Altering the Control Flow

School of Engineering and Applied Sciences

* Up to now: two mechanisms for changing control flow:
* Jumps and branches
e Call and return
React to changes in program state

* |[nsufficient for a useful system:
Difficult to react to changes in system state
e Data arrives from a disk or a network adapter
* Instruction divides by zero
e User hits Ctrl-C at the keyboard
* System timer expires

e System needs mechanisms for “exceptional control flow”

University at Buffalo
Department of Computer Science

and Engincering Exceptional Control Flow

School of Engineering and Applied Sciences

* Exists at all levels of a computer system

 Low level mechanisms
* 1. Exceptions

— Change in control flow in response to a system event
(i.e., change in system state)

— Implemented using combination of hardware and OS software

* Higher level mechanisms
* 2. Process context switch
— Implemented by OS software and hardware timer

3. Signals

— Implemented by OS software
* 4. Nonlocal jumps: setjmp () and Longjmp ()

— Implemented by C runtime library

University at Buffalo
Department of Computer Science

and Engineering EXCE pt i O n S

School of Engineering and Applied Sciences

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
e Kernel is the memory-resident part of the OS

* Examples of events: Divide by 0, arithmetic overflow, page fault, 1/0
request completes, typing Ctrl-C

Event ——— |_current Exception ,
|_next Exception processing
by exception handler

<

* Return to |_current
* Return to |_next
* Abort A

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Exception Tables

O
Exception
numbers
Code for * Each type of event has a
exception handler 0 unique exception number k
_If_x;cleption Code for
viapie exception handler 1
?_ * k =index into exception table
] Code for (a.k.a. interrupt vector)
| | exception handler 2
n-1
— Handler k is called each time
Code for exception k occurs
exception handler n-1
q\
6 .« X

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

(partial) Taxonomy

ECF

Asynchronous

Interrupts

Synchronous

Traps

Faults

Aborts

University at Buffalo

e e > Asynchronous Exceptions (Interrupts)

School of Engineering and Applied Sciences

* Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
 Handler returns to “next” instruction

* Examples:

* Timer interrupt

— Every few ms, an external timer chip triggers an interrupt

— Used by the kernel to take back control from user programs
* |/O interrupt from external device

— Hitting Ctrl-C at the keyboard

— Arrival of a packet from a network
— Arrival of data from a disk Q

University at Buffalo

e o ot Slence Synchronous Exceptions

School of Engineering and Applied Sciences

e Caused by events that occur as a result of executing
an instruction:
* Traps
— Intentional, set program up to “trip the trap” and do something
— Examples: system calls, gdb breakpoints
— Returns control to “next” instruction

* Faults
— Unintentional but possibly recoverable

— Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

— Either re-executes faulting (“current”) instruction or aborts
* Aborts

— Unintentional and unrecoverable Q
— Examples: illegal instruction, parity error, machine check N
— Aborts current program N

University at Buffalo

T S System Calls

School of Engineering and Applied Sciences

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

e Usercalls: open (filename,

options)

e Calls __ open function, which invokes system call instruction syscall

e5d79:
e5d7e:
e5d80:

e5dfa:

00000000000e5d70 <__open>:

b8 02 00 00 00
0f 05
48 3d 01 fo ff ff

c3

mov $0x2,%eax # open 1s syscall #2

syscall

cmp $OXTEfffffffffffo01,%rax

retq

Return value 1in %rax

syscally
cmp

Exception

y

y

N Open flle
Returns

$rax contains syscall number

Other arguments in $rdi,
$rsi, 3rdx, $rl10, 3r8, 3r9
Return value in $rax

Negative value is an error

corresponding to negative
errno

System Call Example: Opening File

University at Buffalo

e oy oTPuter cence System Call Example: Opening File

School of Engineering and Applied Sciences

e Usercalls: open (filename, options)

e Calls __ open function, which invokes system call instruction syscall

000000

e5d79: all #2

ebd7e: in %rax

e5d80:

ebdfa:

e call number
srdi,
,%5r8,%r9

syscall
cmp .
Returns m Negative value is an error 2.
v corresponding to negative
errno 12 p A

University at Buffalo

Y8 Department of Computer Scence Fault Example: Page Fault

School of Engineering and Applied Sciences

int a[1l0007];
* User writes to memory location main ()
{
* That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7 : c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Exception: page fault

mov| % >
\l Copy page from
Return and disk to memory

reexecute movl

v

University at Buffalo

188 Deparment of Computersience - Fault Example: Invalid Memory Reference

School of Engineering and Applied Sciences

O

int a[1l0007];

main ()

{

a[5000] = 13;
}
80483b7: c7 05 60 e3 04 08 0d movl $S0xd, 0x804e360
l Exception: page fault
movl >
Detect invalid address
v » Signal process
* Sends SIGSEGV signal to user process Q
» User process exits with “segmentation fault”
14« X

University at Buffalo

GB | Department of Computer Science (pa rt| a |) Ta XOoNno my Handled in kernel

and Engineering

School of Engineering and Applied Sciences

Handled in user process — o

ECF

Asynchronous

Synchronous

Interrupts Traps Faults Aborts

Signals

University at Buffalo

B | Department of Computer Science L| NUX P Frocess H | erarc hy

and Engineering

School of Engineering and Applied Sciences

.....................
(3 "y
(3 e
. .
0 .

‘e
e
ey

.
.
.
.
amnnnnsnt®®

Login shell
Child

@ @ Note: you can view the
hierarchy using the Linux

pstree command

University at Buffalo

Gh Department of Computer Science S h e | I P rog ra m S

and Engineering

School of Engineering and Applied Sciences

* Ashell is an application program that runs programs on behalf of
the user.

e sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
« csh/tcsh BSD Unix C shell
* bash “Bourne-Again” Shell (default Linux shell)

» Simple shell

« Described in the textbook, starting at p. 753
* Implementation of a very elementary shell

* Purpose
- Understand what happens when you type commands
- Understand use and operation of process control operations

University at Buffalo

GB | Department of Computer Science S| m p I e S h EI I Exa m p | e

and Engineering

School of Engineering and Applied Sciences

linux> ./shellex
> /bin/ls -1 csapp.c Mustgive full pathnames for programs

-rw-r—--r—-— 1 bryant users 23053 Jun 15 2015 csapp.cC

> /bin/ps
PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32017 pts/2 00:00:00 shellex

32019 pts/2 00:00:00 ps

> /bin/sleep 10 & Run program in background
32031 /bin/sleep 10 &
> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32024 pts/2 00:00:00 emacs

32030 pts/2 00:00:00 shellex

32031 pts/2 00:00:00 sleep Sleep is running
32033 pts/2 00:00:00 ps in background

> quit

University at Buffalo

Y8 Department of Computer Scence Problem with Shells

School of Engineering and Applied Sciences

* Shell designed to run indefinitely

* Should not accumulate unneeded resources
— Memory
— Child processes
— File descriptors

* Our example shell correctly waits for and reaps foreground
jobs

* But what about background jobs?
* Will become zombies when they terminate
* Will never be reaped because shell (typically) will not terminate
* Will create a memory leak that could run the kernel out of memory

University at Buffalo

i Department of Computer Science E C F to t h e Re Scye !

and Engineering

School of Engineering and Applied Sciences

e Solution: Exceptional control flow

* The kernel will interrupt regular processing to alert us when a
background process completes

* In Unix, the alert mechanism is called a signal

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Signals

* Asignalis a small message that notifies a process that an
event of some type has occurred in the system
* Akin to exceptions and interrupts

e Sent from the kernel (sometimes at the request of another
process) to a process

e Signal type is identified by small integer ID’s (1-30)
* Only information in a signal is its ID and the fact that it arrived

ID Name
2 SIGINT
9 SIGKILL

11 SIGSEG
Vv

14 SIGALR
M

17 SIGCHL
D

Default Action
Terminate
Terminate

Terminate
Terminate

Ignore

Corresponding Event
User typed ctrl-c
Kill program (cannot override or

ignore)
Segmentation violation

Timer signal

Child stopped or terminated

University at Buffalo

GB | Department of Computer Science Slgnal Concepts: Send|ng a Slgnal

and Engineering
School of Engineering and Applied Sciences

» Kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination
process

* Kernel sends a signal for one of the following reasons:

* Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)

* Another process has invoked the kill system call to
explicitly request the kernel to send a signal to the destination
process

\
N
A
A Y
\\
22« A
¢ N
/, b

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Signal Concepts: Sending a Signal

O
User level
Process B
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
Pending for C Blocked for C Y

University at Buffalo
Department of Computer Science

an Engineering Signal Concepts: Sending a Signal

O

User level
Process B

Process C
@)
@
>
Q.
w
ol kernel
O
Pending for A Blocked for A Q
A ending for B Blocked for B
Pending for C Blocked for C b4 .

University at Buffalo

et of computerScence Sighal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O

User level
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
1| Pending for C Blocked for C s

University at Buffalo

Gh Department of Computer Science S|gna| COnceptS: Send|ng a Slgnal

and Engineering

School of Engineering and Applied Sciences

O

User level
Process B
Process A
kernel
Blocked for A Q
J Blocked for B
1 ending for C Blocked for C 6«

University at Buffalo

V83| Department of Computer Science Sighal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O
User level
Process B
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
0] Pending for C Blocked for C .,

University at Buffalo

et of computerScence Sighal Concepts: Receiving a Signal

School of Engineering and Applied Sciences

O

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
* Ignore the signal (do nothing)
e Terminate the process (with optional core dump)

e Catch the signal by executing a user-level function called signal
handler

— Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process L 4 to signal handler
Inext ' (3) Signal
handler runs Q
(4) Signal handler
returns to
next instruction 28 .« A

University at Buffalo

& | pepartment of Computer science.: §jong| Concepts: Pending and Blocked Signals

and Engineering

School of Engineering and Applied Sciences

O

* Assignal is pending if sent but not yet received
* There can be at most one pending signal of any particular type

* Important: Signals are not queued

— If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

* A process can block the receipt of certain signals

* Blocked signals can be delivered, but will not be received until the
signal is unblocked

e A pending signal is received at most once Q

University at Buffalo

and Engineering

School of Engineering and Applied Sciences

B pepartment of Computer scence— §jong| Concepts: Pending/Blocked Bits

* Kernel maintains pending and blocked bit vectors
in the context of each process

* pending: represents the set of pending signhals

— Kernel sets bit k in pending when a signal of type k is delivered
— Kernel clears bit k in pending when a signal of type k is received

* blocked: represents the set of blocked signals

— Can be set and cleared by using the sigprocmask function
— Also referred to as the signal mask.

University at Buffalo

3| Department of Computer cince Signal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O
User level
Process A
O
Q Process C
2
E’
// kernel
/endlng for A Blocked for A Q
N\ _Sending for B Blocked for B
1| Pending for C Blocked for C YIS

University at Buffalo

GB | Department of Computer Science Sendlng S|gnals W|th /bj_]_"l/ kj_ll PrOgram

and Engineering

School of Engineering and Applied Sciences

O

e /bin/kill program

sends arbitrary signal linux> ./forks 16
Childl: pid=24818 pgrp=24817
to a process or process Child2: pid=24819 pgrp=24817

grOUp linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
* Examples 24818 pts/2 _ 00:00:02 forks
. . 24819 pts/2 00:00:02 forks
* /bin/kill -9 24820 gts/z 00:00:00 ps
24818 linux> /bin/kill -9 -24817
Send SIGKILL to process 24818 linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tecsh
e /bin/kill -9 - 24823 pts/2 00:00:00 ps
24817 linux>
Send SIGKILL to every process in o‘\\
process group 24817 \\
32 « A

University at Buffalo

B | Department of Computer Science Send|ng S|gnals from the Keyboa rd

and Engineering

School of Engineering and Applied Sciences

* Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

* SIGINT — default action is to terminate each process
* SIGTSTP — default action is to stop (suspend) each process

pid=20

id=40
pgid=20 p:

pgid=40

pid=21 pid=22 Q,
pgid=20 pgid=20 s

Foreground A
process group 20 p .

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
PID TTY
27699 pts/8
28107 pts/8
28108 pts/8
28109 pts/8
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
PID TTY
27699 pts/8
28110 pts/8

STAT

STAT
Ss
R+

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./forks
./forks
psS w

COMMAND
-tcsh
pPsS W

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

University at Buffalo

QB | pepartment of C ter Sci YT :
o g e Science Receiving Signals
g g pp o
e Suppose kernel is returning from an exception
handler and is ready to pass control to process p
|
Process q I Process p
:
: user code
: kernel code } context switch
. |
Time : user code
: kernel code } context switch
|
: user code
|
|
q\

University at Buffalo

G g);g%;tgr?r]e:;r?:gComputer Science Re ce |V| N g S | g na I S

School of Engineering and Applied Sciences

* Suppose kernel is returning from an exception handler and
is ready to pass control to process p

* Kernel computes pnb = pending & ~blocked
* The set of pending nonblocked signals for process p

If (onb == 0)

* Pass control to next instruction in the logical flow for p

e Else

* Choose least nonzero bit k in pnb and force process p to receive
signal k

* The receipt of the signal triggers some action by p
* Repeat for all nonzero k in pnb
e Pass control to next instruction in logical flow for p .

University at Buffalo

G5 g)ne(ﬁ:]tgr?ne:;r?:gComputer Science D efa u It Act | ONS

School of Engineering and Applied Sciences

* Each signal type has a predefined default action, which is one of:
* The process terminates
* The process stops until restarted by a SIGCONT signal
* The process ignores the signal

University at Buffalo

GB | Department of Computer Science InStalllng Slgnal Handlers

and Engineering

School of Engineering and Applied Sciences

* The signal function modifies the default action associated
with the receipt of sighal signum:

* handler t *signal(int signum, handler t
*handler)

* Different values for handler:
* SIG_IGN: ignore signals of type signum
» SIG_DFL: revert to the default action on receipt of signals of type
signum

* Otherwise, handler is the address of a user-level signal handler
— Called when process receives signal of type signum
— Referred to as “installing” the handler
— Executing handler is called “catching” or “handling” the signal

— When the handler executes its return statement, control passes back to
instruction in the control flow of the process that was interrupted by
receipt of the signal

University at Buffalo

Department of Computer Science

and Engineering

Signal Handling Example

School of Engineering and Applied Sciences

{

int

void sigint handler (int sig) /* SIGINT handler */

printf ("So you think you can stop the bomb with ctrl-c,
sleep(2);

printf ("Well...");

fflush (stdout) ;

sleep(1l);

printf ("OK. :-)\n");

ex1it (0) ;

main (int argc, char** argv)
/* Install the SIGINT handler */
1f (signal (SIGINT, sigint handler) == SIG ERR)

unix error ("signal error");

/* Wait for the receipt of a signal */
pause () ;

return 0;

do you?\n") ;

sigint.c

University at Buffalo

V83| Department of Computer Science Blocking and Unblocking Signals

School of Engineering and Applied Sciences

* Implicit blocking mechanism

e Kernel blocks any pending signals of type currently being handled.
 E.g., ASIGINT handler can’t be interrupted by another SIGINT

* Explicit blocking and unblocking mechanism
e sigprocmask function

e Supporting functions
* sigemptyset — Create empty set
e sigfillset —Add every signal number to set
* sigaddset —Add signal number to set
 sigdelset — Delete signal number from set

University at Buffalo
Department of Computer Science

and Engineering Temporarily Blocking Signals

School of Engineering and Applied Sciences

sigset t mask, prev mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG BLOCK, &mask, &prev mask);

E /* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG SETMASK, &prev _mask, NULL);

University at Buffalo
Department of Computer Science

and Engineering S ummad ry

School of Engineering and Applied Sciences

* Signals provide process-level exception handling
e Can generate from user programs
* Can define effect by declaring signal handler
* Be very careful when writing signal handlers

* Nonlocal jumps provide exceptional control flow
within process

e Within constraints of stack discipline

