University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

G5

Dynamic Memory Allocation (2)

Karthik Dantu
Ethan Blanton
Computer Science and Engineering

University at Buffalo
kdantu@buffalo.edu

Slides adapted from CMU 15-213: CSAPP course

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

* Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.

e for data structures whose
size is only known at
runtime

* Dynamic memory
allocators manage an area
of process VM known as
the heap.

0x400000

0

Memory
. I invisible to
Kernel virtual memory
user code
User stack
(created at runtime) .
—3rsp
l (stack
$ pointer)
Memory-mapped region for
shared libraries
1 «— brk
Run-time heap
(created by malloc)
A
Read/write segment Loaded
(.data, .bss) from
' the
Read-only segment executable
(.init, .text, .rodata) file

Unused

University at Buffalo

G5 pepartment of computer scence. R@VieW: Keeping Track of Free Blocks

and Engineering

School of Engineering and Applied Sciences

O
* Method 1: Implicit list using length—Ilinks all blocks
Unused JUUEES o e e R Need to tag
NI o7 h ¥l i e " each block as
32 48 32 L6 allocated/free
* Method 2: Explicit list among the free blocks using pointers
32 48 32| 1 16 Need space
for pointers
* Method 3: Segregated free list
» Different free lists for different size classes
* Method 4: Blocks sorted by size
e Can use a balanced tree (e.g. Red-Black tree) with pointers within each Q
free block, and the length used as a key
3 .« X

University at Buffalo

GB | Department of Computer Science RevieW: Im p||C|t L|Sts Su Mmma ry

and Engineering

School of Engineering and Applied Sciences

* Implementation: very simple

e Allocate cost:
e |linear time worst case

* Free cost:
e constant time worst case
= even with coalescing

* Memory Overhead:
* Depends on placement policy
e Strategies include first fit, next fit, and best fit

* Not used in practice formalloc/free because of
linear-time allocation
= used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

University at Buffalo

GB | Department of Computer Science TO d ay

and Engineering

School of Engineering and Applied Sciences

* Explicit free lists
* Segregated free lists
* Garbage collection

* Memory-related perils and pitfalls

University at Buffalo

3| Department of Computer Sclence Keeping Track of Free Blocks

School of Engineering and Applied Sciences

 Method 1: Implicit list using length—Ilinks all blocks

Unused

——————————

———————————
~~~~~~~~~~~
2 -

* Method 2: Explicit list among the free blocks using pointers

N T\

32 48 32| 16

 Method 3: Segregated free list

* Different free lists for different size classes

* Method 4: Blocks sorted by size a,

* Can use a balanced tree ﬁe.g. Red-Black tree) with pointers within N
each free block, and the length used as a key ] /



University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Explicit Free Lists

Allocated (as before)

Free

Optional

Size

Next

Prev

N\

Size a
Payload and

padding

Size a

Size

* Maintain list(s) of free blocks, not all blocks

* Luckily we track only free blocks, so we can use payload area
* The “next” free block could be anywhere

— So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

— To find adjacent blocks according to memory order




University at Buffalo

G5 Department of Computer Science EXp I | Clt F ree L | StS

and Engineering

School of Engineering and Applied Sciences

 Logically:

\ 4

\ 4

* Physically: blocks can be in any order

—
14

/ Forward (next) links

32| -7 (32|32 32|48| /| < 48|32 32|32( ' |, |32

S

‘K ¢ \—/ Back (prev) links




University at Buffalo

B e oiomersene - Allocating From Explicit Free Lists

School of Engineering and Applied Sciences

——

= malloc(..)




University at Buffalo

e g T e Freeing With Explicit Free Lists

School of Engineering and Applied Sciences

* Insertion policy: Where in the free list do you put a newly freed
block?

* Unordered
e LIFO (last-in-first-out) policy
— Insert freed block at the beginning of the free list
* FIFO (first-in-first-out) policy
— Insert freed block at the end of the free list

* Pro: simple and constant time
e Con: studies suggest fragmentation is worse than address ordered

* Address-ordered policy

* Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

e (Con: requires search
* Pro: studies suggest fragmentation is lower than LIFO/FIFO



University at Buffalo

School of Engineering and Applied Sciences

5 beparmen ot comerscene— Ergeing With a LIFO Policy (Case 1)

Allocated

Allocated

free(

Root

* Insert the freed block at the root of the list




University at Buffalo

8 Deprtment o comeuiersiene - Eraging With a LIFO Policy (Case 2)

School of Engineering and Applied Sciences

Allocated Free

free(

Root ; I LI o

 Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

Root ./ @) B Q




University at Buffalo

"5 |Department of Computer Science Freeing With a LIFO Policy (Case 3)

School of Engineering and Applied Sciences

O

Free Allocated

free(

\_Io

* Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

1t

Root H B Q

l \
N
\
N
\\
13 ,/
V4 N
z' X

® (¢




University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Freeing With a LIFO Policy (Case 4)

Free

Free

free(

Root

|

I

 Splice out adjacent predecessor and successor blocks,
coalesce all 3 blocks, and insert the new block at the root of

+hhA lic+

!

I

i




University at Buffalo

Y8 Department of Computer Scence Explicit List Summary

School of Engineering and Applied Sciences

* Comparison to implicit list:

* Allocate is linear time in number of free blocks instead of all
blocks

— Much faster when most of the memory is full

* Slightly more complicated allocate and free because need
to splice blocks in and out of the list

* Some extra space for the links (2 extra words needed for
each block)

— Does this increase internal fragmentation?



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Today

* Explicit free lists
* Segregated free lists
* Garbage collection

* Memory-related perils and pitfalls



University at Buffalo

B bepanment of Computersience - Sagregated List (Seglist) Allocators

School of Engineering and Applied Sciences

e Each size class of blocks has its own free list

16 > > = —

32-48 > > —

64-inf —

e Often have separate classes for each small size

e For larger sizes: One class for each size [2! + 1, 2!11]



University at Buffalo

T S Seqglist Allocator

School of Engineering and Applied Sciences

e Given an array of free lists, each one for some size class

* To allocate a block of size n:
» Search appropriate free list for block of size m > n (i.e., first fit)
 If an appropriate block is found:
— Split block and place fragment on appropriate list
— If no block is found, try next larger class
* Repeat until block is found

* |f no block is found:
* Request additional heap memory from OS (using sbrk () )
* Allocate block of n bytes from this new memory
* Place remainder as a single free block in appropriate size class.



University at Buffalo

"5 ertmert of Computer Science Seglist Allocator (cont.)

School of Engineering and Applied Sciences

* To free a block:
* Coalesce and place on appropriate list

* Advantages of seglist allocators vs. non-seglist
allocators (both with first-fit)
* Higher throughput
- log time for power-of-two size classes vs. linear time

e Better memory utilization

— First-fit search of segregated free list approximates a best-fit search
of entire heap.

— Extreme case: Giving each block its own size class is equivalent to
best-fit.



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Today

* Explicit free lists
* Segregated free lists
* Garbage collection

* Memory-related perils and pitfalls



G Bl:;:trytﬁgﬁoofComputerScience ImpIICIt Memory Management

and Engineering

Garbage Collection

* Garbage collection: automatic reclamation of heap-allocated
storage—application never has to explicitly free memory

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

e Common in many dynamic languages:
e Python, Ruby, Java, Perl, ML, Lisp, Mathematica

* Variants (“conservative” garbage collectors) exist for C and C++
* However, cannot necessarily collect all garbage



University at Buffalo

Y5 | Department of Computer Scence Garbage Collection

School of Engineering and Applied Sciences

* How does the memory manager know when memory
can be freed?

* In general we cannot know what is going to be used in the
future since it depends on conditionals

e But we can tell that certain blocks cannot be used if there are
no pointers to them

* Must make certain assumptions about pointers
* Memory manager can distinguish pointers from non-pointers
* All pointers point to the start of a block

e Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

N
N
\
N
\\
23 ,/
¢ N
z' X



University at Buffalo

258 Departrent of Computer Sience Classical GC Algorithms

School of Engineering and Applied Sciences

* Mark-and-sweep collection (McCarthy, 1960)

* Does not move blocks (unless you also “compact”)

» Reference counting (Collins, 1960)
* Does not move blocks (not discussed)

* Copying collection (Minsky, 1963)

* Moves blocks (not discussed)

* Generational Collectors (Lieberman and Hewitt, 1983)
e Collection based on lifetimes

— Most allocations become garbage very soon
— So focus reclamation work on zones of memory recently allocated

* For more information:
Jones and Lin, “Garbage Collection: Algorithms for

Automatic Dynamic Memory”, John Wiley & Sons, 1996.



University at Buffalo

= g)rfgz:]tgr?ne:;r?:gComputer Science M e m O ry a S a G ra p h

School of Engineering and Applied Sciences

* We view memory as a directed graph
e Each block is a node in the graph
* Each pointer is an edge in the graph

* Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O O O
/ \

Heap nodes O reachable

O Not-reachable

(garbage)
e O

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)



University at Buffalo

GB | Department of Computer Science M a rk an d Swe = p CO I I e Ctl N g

and Engineering

School of Engineering and Applied Sciences

e Can build on top of malloc/free package
* Allocate using malloc until you “run out of space”

* When out of space:
e Use extra mark bit in the head of each block
* Mark: Start at roots and set mark bit on each reachable block
e Sweep: Scan all blocks and free blocks that are not marked

/\rOOt Note: arrows
* here denote
Before mark L\I/IJ/ I . ‘/I I memory refs, not

free list ptrs.
SN\ N\
I »

After mark L\l/l_J/ “| | | Mark bit set
A

¢ free I 26 PR

After sweep free




University at Buffalo

i Department of Computer Science
and Engineering TO d ay

School of Engineering and Applied Sciences

* Explicit free lists
* Segregated free lists
* Garbage collection

* Memory-related perils and pitfalls



University at Buffalo

GB | Department of Computer Science M e m O ry_ Re I ated Pe rl I S a n d P |tfa I I S

and Engineering
School of Engineering and Applied Sciences

* Dereferencing bad pointers

* Reading uninitialized memory

* Overwriting memory

* Referencing nonexistent variables
* Freeing blocks multiple times

* Referencing freed blocks

* Failing to free blocks



University at Buffalo

GB | Department of Computer Science D e refe re N Cl N g B a d P O | N te rS

and Engineering

School of Engineering and Applied Sciences

* The classic scanf bug

int wval;

scanf ("$d", wval) ;




University at Buffalo

GB | Department of Computer Science Readlng Unlnltlallzed Memory

and Engineering

School of Engineering and Applied Sciences

* Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec (int **A, int *x) {
int *y = malloc (N*sizeof (int));
int 1, Jj;

for (1=0; i<N; i++)
for (3=0; j<N; J++)
y[i] += A[1]1[31*x[3];
return y;

* Can avoid by using calloc



University at Buffalo
Department of Computer Science

and Engineering Ove rwrltl ng Memory

School of Engineering and Applied Sciences

 Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;

for (i=0; i<N; i++) {
pli] = malloc (M*sizeof (int));

* Can you spot the bug?



University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Overwriting Memory

e Off-by-one errors

char **p;

p = malloc (N*sizeof (int *));

for (1=0; i<=N; i++) {
= malloc (M*sizeof (int)) ;

char *p;

strcpy (p, s)

p = malloc(strlen(s)):;

14




University at Buffalo

T S Overwriting Memory

School of Engineering and Applied Sciences

* Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

e Basis for classic buffer overflow attacks



University at Buffalo

Y8 Department of Computer Scence Overwriting Memory

School of Engineering and Applied Sciences

* Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != wval)
p += sizeof (int);

return p;




University at Buffalo

GB | Department of Computer Science Ove rwrltl N g M emo ry

and Engineering

School of Engineering and Applied Sciences

* Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheapl[0];
binheap[0] = binheap[*size - 1];
*size—--—;
Heapify (binheap, *size, 0);
return (packet) ;

* What gets decremented?
e (See next slide)



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

C operators

Operators
() []

Binary

<<= >>=

Associativity
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

e —>, (),and [] have high precedence, with * and & just below

 Unary +, —, and * have higher precedence than binary forms

Source: K&R page 53, updated



University at Buffalo

= aDne([iJE:]tgr?ne:;r?:gComputer Science Ove rWFItI N g M e m O ry

School of Engineering and Applied Sciences

O
* Referencing a pointer instead of the object it points to
int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheapl[0];
binheap[0] = binheap[*size - 1];
*size—--;
Heapify (binheap, *size, 0);
return (packet) ; o
Operators Associativity
} 0 1 -> . ++% left to right
'~ 4+ == + - & (type) sizeof right to left
* /% left to right
+ - left to ri:ht
e Same effect as < ot ot
° Size__; = I= left to right
& left to right
. A left to right
* Rewrite as | left to right
¢ (*size)--; " oo
?: right to left \\
= 4= -= *= [= 3= g= ~= 1= <<= >>= right to left AN
, left to right 50 K4 ) \



University at Buffalo

B permentof omuterscence Referencing Nonexistent Variables

School of Engineering and Applied Sciences

* Forgetting that local variables disappear when a
function returns

int *foo () {
int wval;

return &val;




University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Freeing Blocks Multiple Times

* Nasty!

free (x);

free(x);

x = malloc (N*sizeof (int)) ;

y = malloc (M*sizeof (int)) ;

<manilipulate x>

<manipulate y>




University at Buffalo
Department of Computer Science

and Engineering Referencing Freed Blocks

School of Engineering and Applied Sciences

e Evil!

x = malloc (N*sizeof (int)) ;
<manipulate x>
free (x);

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)
vii] = x[1]++;




University at Buffalo

B e oicomersene— Eailing to Free Blocks (Memory Leaks)

School of Engineering and Applied Sciences

O

* Slow, long-term killer!

foo () {
int *x = malloc (N*sizeof (int));
return;

}




University at Buffalo

B peprnentof Computerscence = 73jling to Free Blocks (Memory Leaks)

School of Engineering and Applied Sciences

O

* Freeing only part of a data structure

struct list {
int wval;
struct list *next;

v

foo () |
struct list *head = malloc(sizeof (struct 1list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return; Q




University at Buffalo

e s = Dealing With Memory Bugs

School of Engineering and Applied Sciences

* Debugger: gdb
e Good for finding bad pointer dereferences
* Hard to detect the other memory bugs

* Data structure consistency checker
* Runs silently, prints message only on error
* Use as a probe to zero in on error

* Binary translator: valgrind
* Powerful debugging and analysis technique
* Rewrites text section of executable object file

* Checks each individual reference at runtime
— Bad pointers, overwrites, refs outside of allocated block

* glibc malloc contains checking code
* setenv MALLOC CHECK 3



