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Dynamic Memory Allocation

• Programmers use dynamic 
memory allocators (such as 
malloc) to acquire virtual 
memory (VM) at run time. 

• for data structures whose 
size is only known at 
runtime

• Dynamic memory 
allocators manage an area 
of process VM known as 
the heap. 
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Dynamic Memory Allocation

• Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free
• Types of allocators

• Explicit allocator:  application allocates and frees space 
- E.g.,  malloc and free in C

• Implicit allocator: application allocates, but does not free 
space
- E.g., new and garbage collection in Java

• Will discuss simple explicit memory allocation today
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The malloc Package

#include <stdlib.h>

void *malloc(size_t size)
• Successful:

- Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

- If size == 0, returns NULL

• Unsuccessful: returns NULL (0) and sets errno to ENOMEM
void free(void *p)

• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc, calloc, or 
realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero. 
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap



‘-

5

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(long n) {
long i, *p;

/* Allocate a block of n longs */
p = (long *) malloc(n * sizeof(long));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;
/* Do something with p */
. . .
/* Return allocated block to the heap */
free(p);

}
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Sample Implementation

• Code
• File mm-reference.c
• Manages fixed size heap
• Functions mm_malloc, mm_free

• Features
• Based on words of 8-bytes each
• Pointers returned by malloc are double-word aligned

- Double word = 2 words
• Compile and run tests with command interpreter



‘-

7

Visualization Conventions

• Show 8-byte words as squares
• Allocations are double-word aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word
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Allocation Example (Conceptual)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(size_t)



‘-

9

Constraints

• Applications
• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Explicit Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

- i.e., can’t reorder or buffer requests

• Must allocate blocks from free memory
- i.e., can only place allocated blocks in free memory

• Must align blocks so they satisfy all alignment requirements
- 16-byte (x86-64) alignment on 64-bit systems

• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

- i.e., compaction is not allowed.  Why not?
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Performance Goal: Throughput

• Given some sequence of malloc and free requests:
• R0, R1, ..., Rk, ... , Rn-1

• Goals: maximize throughput and peak memory utilization
• These goals are often conflicting

• Throughput:
• Number of completed requests per unit time
• Example:

- 5,000  malloc calls and 5,000 free calls in 10 seconds 
- Throughput is 1,000 operations/second
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Performance Goal: Minimize Overhead

• Given some sequence of malloc and free requests:
• R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk
• malloc(p) results in a block with a payload of p bytes
• After request Rk has completed, the aggregate payload Pk is the 

sum of currently allocated payloads

• Def: Current heap size Hk
• Assume Hk is monotonically nondecreasing

- i.e., heap only grows when allocator uses sbrk

• Def: Overhead after k+1 requests
• Fraction of heap space NOT used for program data 
• Ok = Hk / (maxi≤k Pi )  – 1.0
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Benchmark Example

• Benchmark 
syn-array-short
• Allocate & free 10 

blocks
• a = allocate
• f = free
• Bias toward allocate at 

beginning & free at end
• Blocks number 1–10
• Allocated: Sum of all 

allocated amounts
• Peak: Max so far of 

Allocated

Step Command Delta Allocated Peak
1 a 0 9904 9904 9904 9904
2 a 1 50084 50084 59988 59988
3 a 2 20 20 60008 60008
4 a 3 16784 16784 76792 76792
5 f 3 -16784 60008 76792
6 a 4 840 840 60848 76792
7 a 5 3244 3244 64092 76792
8 f 0 -9904 54188 76792
9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792
11 a 7 33856 33856 90036 90036
12 f 1 -50084 39952 90036
13 a 8 136 136 40088 90036
14 f 7 -33856 6232 90036
15 f 6 -2012 4220 90036
16 a 9 20 20 4240 90036
17 f 4 -840 3400 90036
18 f 8 -136 3264 90036
19 f 5 -3244 20 90036
20 f 9 -20 0 90036
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Benchmark Visualization

• Data line shows total allocated data ( Pi )
• Data Fit line shows peak of total (maxi≤k Pi )
• Normalized in X & Y

Step Command Delta Allocated Peak
1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036
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Full Benchmark Behavior

• Given sequence of mallocs & 
frees (40,000 blocks)
• Starts with all mallocs, and shifts 

toward all frees

•Manage space for all 
allocated blocks
•Metrics
• Data: Pi 

• Data fit: maxi≤k Pi 0.0
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Fragmentation

• Poor memory utilization caused by fragmentation
• internal fragmentation
• external fragmentation
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Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is smaller 
than block size

• Caused by 
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions 

(e.g., to return a big block to satisfy a small request)
• Depends only on the pattern of previous requests
• Thus, easy to measure

Payload Internal 
fragmentation

Block

Internal 
fragmentation
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Internal Fragmentation Effect

• Perfect Fit: Only requires space for allocated data, data 
structures, and unused space due to alignment constraints
• For this benchmark, 1.5% overhead
• Cannot achieve in practice

- Especially since cannot move allocated blocks
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• Occurs when there is enough aggregate heap memory, but no single free 
block is large enough

• Amount of external fragmentation depends on the pattern of future requests
• Thus, difficult to measure

External Fragmentation

p4 = malloc(7*SIZ) Yikes! (what would happen now?)

#define SIZ sizeof(size_t)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)



‘-

19

External Fragmentation Effect

• Best Fit: One allocation strategy
• (To be discussed later)
• Total overhead = 8.3% on this benchmark
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Implementation Issues

• How do we know how much memory to free given just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a structure that is 
smaller than the free block it is placed in?

• How do we pick a block to use for allocation -- many might fit?

• How do we reuse a block that has been freed?
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Knowing How Much to Free

• Standard method
• Keep the length (in bytes) of a block in the word preceding the block.

- Including the header
- This word is often called the header field or header

• Requires an extra word for every allocated block

p0 = malloc(4*SIZ)
p0

free(p0)
block size Payload

(aligned)

48

Padding
(for alignment)
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Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16
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Method 1: Implicit Free List

• For each block we need both size and allocation status
• Could store this information in two words: wasteful!

• Standard trick
• When blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as an allocated/free flag
• When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block  
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding
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Detailed Implicit Free List Example

Start 
of 

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
è Payloads are aligned

Unused

heap_start heap_end
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Implicit List: Data Structures

• Block declaration

• Getting payload from block pointer

• Getting header from payload

typedef uint64_t word_t;

typedef struct block
{

word_t header;
unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) bp
- offsetof(block_t, payload));

// Zero length array

// bp points to a payload

// block_t *block

C function offsetof(struct, member) returns offset of member within struct
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Implicit List: Header access

• Getting allocated bit from header

• Getting size from header

• Initializing header

return header & 0x1;

Size a

return header & ~0xfL;

block->header = size | alloc;

// block_t *block
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Implicit List: Traversing list

• Find next block
static block_t *find_next(block_t *block)
{

return (block_t *) ((unsigned char *) block 
+ get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused
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Implicit List: Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits:
• Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)
{

block_t *block;
for (block = heap_start; block != heap_end;

block = find_next(block)) {
{

if (!(get_alloc(block)) 
&& (asize <= get_size(block)))

return block;
}
return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end
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Implicit List: Finding a Free Block

• First fit:
• Search list from beginning, choose first free block that fits:
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit:
• Like first fit, but search list starting where previous search finished
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit:
• Search the list, choose the best free block: fits, with fewest bytes left over
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit
• Still a greedy algorithm.  No guarantee of optimality
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Comparing Strategies

• Total Overheads (for this benchmark)
• Perfect Fit: 1.6%
• Best Fit: 8.3%
• First Fit: 11.9%
• Next Fit: 21.6%
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Implicit List: Allocating in Free Block

• Allocating in a free block: splitting
• Since allocated space might be smaller than free space, we 

might want to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8
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Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){
size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {
write_header(block, asize, true);
block_t *block_next = find_next(block);
write_header(block_next, block_size - asize, false);

}

1632 3216
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Implicit List: Freeing a Block

• Simplest implementation:
• Need only clear the “allocated” flag
• But can lead to “false fragmentation” 

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes!
There is enough contiguous
free space, but the allocator
won’t be able to find it

8

8
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Implicit List: Coalescing

• Join (coalesce) with next/previous blocks, if they are 
free
• Coalescing with next block

32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

1
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Implicit List: Coalescing

• Join (coalesce) with next block, if it is free
• Coalescing with next block

• How do we coalesce with previous block?
- How do we know where it starts?
- How can we determine whether its allocated?

1632 16

free(p) p

64 16

64

48 16

logically
gone

8

8
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Implicit List: Bidirectional Coalescing 

• Boundary tags [Knuth73]
• Replicate size/allocated word at “bottom” (end) of free blocks
• Allows us to traverse the “list” backwards, but requires extra space
• Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8
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Implementation with Footers

• Locating footer of current blockconst size_t dsize = 2*sizeof(word_t);

static word_t *header_to_footer(block_t *block)
{

size_t asize = get_size(block);
return (word_t *) (block->payload + asize - dsize);

}

header payload header payloadunused footer

asize
dsize

asize
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Implementation with Footers

• Locating footer of previous block

static word_t *find_prev_footer(block_t *block)
{

return &(block->header) - 1;
}

header payload header payloadunused footer

1 word
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Splitting Free Block: Full Version

64

p

split_block(p, 32)

static void split_block(block_t *block, size_t asize){
size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {
write_header(block, asize, true);
write_footer(block, asize, true);
block_t *block_next = find_next(block);
write_header(block_next, block_size - asize, false);
write_footer(block_next, block_size - asize, false);

}

32 32 1632 3264 16
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Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1



‘-

42

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0
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m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1
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m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Heap Structure

• Dummy footer before first header
• Marked as allocated
• Prevents accidental coalescing when freeing first block

• Dummy header after last footer
• Prevents accidental coalescing when freeing final block

Start 
of 

heap
16/0 32/1 32/164/0

Dummy
Header

8/1

Dummy
Footer

8/1

heap_start heap_end
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Top-Level Malloc Code

const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)
{

size_t asize = round_up(size + dsize, dsize);

block_t *block = find_fit(asize);

if (block == NULL)
return NULL;

size_t block_size = get_size(block);
write_header(block, block_size, true);
write_footer(block, block_size, true);

split_block(block, asize);

return header_to_payload(block);
}

round_up(n, m)
=

m *((n+m-1)/m)
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Top-Level Free Code
void mm_free(void *bp)
{

block_t *block = payload_to_header(bp);
size_t size = get_size(block);

write_header(block, size, false);
write_footer(block, size, false);

coalesce_block(block);
}



‘-

48

Disadvantages of Boundary Tags

• Internal fragmentation

• Can it be optimized?
• Which blocks need the footer tag?
• What does that mean?

Size

Payload and
padding

a

Size a
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No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block  
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

• Boundary tag needed only for free blocks
• When sizes are multiples of 16, have 4 spare bits
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No Boundary Tag for Allocated Blocks (Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10
m2 01

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block
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No Boundary Tag for Allocated Blocks (Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks (Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks (Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Summary of Key Allocator Policies

• Placement policy:
• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation
• Interesting observation: segregated free lists (next lecture) 

approximate a best fit placement policy without having to 
search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?
• How much internal fragmentation are we willing to 

tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called 
• Deferred coalescing: try to improve performance of free

by deferring coalescing until needed.
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Implicit Lists: Summary

• Implementation: very simple
• Allocate cost: 

• linear time worst case
• Free cost: 

• constant time worst case
§ even with coalescing

• Memory Overhead
• will depend on placement policy
• First-fit, next-fit or best-fit

• Not used in practice for  malloc/free because of 
linear-time allocation
§ used in many special purpose applications

• However, the concepts of splitting and boundary tag 
coalescing are general to all allocators


