University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Compiler and Toolchain

Karthik Dantu
Ethan Blanton
Computer Science and Engineering

University at Buffalo
kdantu@buffalo.edu

Portions of this lecture are from the Princeton COS 217 course slides

Karthik Dantu

University at Buffalo

Uy Department of Computer Science gcc —_— GNU Compller COIIGCtlon

and Engineering
School of Engineering and Applied Sciences

* C compiler as we know it is actually many tools

* This is because
gcc history
Common compiler design
Specific design goal of compilation in parts

* We actually invoke the compiler driver
* Compileris only a single step of a multi-step process

Karthik Dantu

University at Buffalo

| epariment of computersience—— Gomplete Toolchain

School of Engineering and Applied Sciences

‘o]
|
1
Included
Headers
Pre- i
,) Compiled
.csource (——= CPP ;:r:gsfcs:d ——= C Compiler s assembly

» Assembler ?)b%ﬁ: . ——— Linker Executable
External
Libraries °\

Karthik Dantu

University at Buffalo
= Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Compiler Toolchain - Example

C source

Pre-processor
Expanded C source

C Compiler

Assembly source

Assembler
Obiject code

Linker
Executable binary

#include <stdio.h>

#define NUM 42

Int main() {
int a=NUM;

printf (“Hello,
world\n”);

return 0;

. 4 /{ \\ S
Karthik Dantu .

University at Buffalo

GB | Department of Computer Science C P re p rO Ce S SO r

and Engineering
School of Engineering and Applied Sciences

 Performs source-code transformations before
compiling

* Does not understand C — can be used for other
things

e Three main functions

Apply pre-processor directives
Replace all macros with actual values/code

Remove all comments

Karthik Dantu

iversity at Buffalo

B peprimenof ompuerscence (G Preprocessor Directives

School of Engineering and Applied Sciences

* Primary task is to apply pre-processor directives
* Directives begin with #

* #include: insert another file

* #define: Define a symbol or a macro

* #ifdef/#endif: Include the enclosed block only if a
symbol is defined

* #if/#endif: Include only if a condition is true
* Preprocessor directives DO NOT end with a semicolon

Karthik Dantu

sity at Buffalo

s E:EEE;.‘::;‘.’:?““”SC'e”Ce Defining Symbols and Macros

School of Engineering and Applied Scie

* #define directive defines a symbol or macro
#define PI 3.14159

#define PLUSONE(x) (x + 1)
PLUSONE (PI) /* Becomes (3.14159 + 1) */

* Macros are expanded, not calculated
* EXxpansion given to the next stage in compilation

Karthik Dantu

University at Buffalo

8 Depmentof computersience. Praprocessing — Conditional Compilation

School of Engineering and Applied Sciences
O

* Various #if directives control conditional compilation

#ifdef ARGUMENT

/* This code will be included only if ARGUMENT is a
symbol defined by the preprocessor — regardless of its
expansion */

#endif

* The #ifndef directive requires ARGUMENT to be
undefined

* The #if directive requires ARGUMENT to evaluate to True

. 8 /{ \\ A
Karthik Dantu .

University at Buffalo

B peprinentof ompuerscence—— The G Compiler

School of Engineering and Applied Sciences

* Transforms C source into machine-dependent
assembly code

* Produces an obiject file via the assembler
* Only part of the toolchain that understands C

* |tunderstands
Semantics of C
Capabillities of the target machine

* |t uses these things to transform C into assembly

Karthik Dantu

University at Buffalo

B peparnentof cmpuersience - Aggembly Language

School of Engineering and Applied Sciences

* Assembly language is machine-specific, but
human readable

* Assembly language contains
Descriptions of machine instructions
Descriptions of data

Address labels marking variables and functions
(symbols)

Metadata about the code and compiler transformations
* All of the semantics of C are in assembly
* Structure of assembly may be very different

Karthik Dantu

University at Buffalo

B bt ofcompuersine— Gompiling to Assembly

School of Engineering and Applied Sciences

* \We can compile to assembly using —S option in
gcc

S gcc —S helloworld.c

* This produces a file called helloworld.s

Karthik Dantu

University at Buffalo

QB | Department of C ter Sci
e o oomputerscence— Halloworld.s

School of Engineering and Applied Sciences

l .file "helloworld.c"
.section . rodata
.LCO:
.string "Hello, world"
. text
.globl main
.type main, @function
main:
.LFBO:
.cfi_startproc
pushq %Srbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
mov 1 $42, -4(%rbp)
mov 1 $.LCO, %edi
call puts
mov L $0, %eax
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFE®:
.size main, .-main
.ident "“GCC: (Ubuntu 5.4.0-6ubuntul~16.04.11) 5.4.0 20160609"
.section .note.GNU-stack,"",@progbits

Karthik Dantu

University at Buffalo

B Deparimentof computersience—— Ha|loworld.s - |

School of Engineering and Applied Sciences

* .LCO: local label
* .string declares string constant

* .globl and .type directives 0

declare that we're defining a global |-Lce: |
]) .string "Hello, world"
function named main text

.globl main
.type main, @function

.file "helloworld.c"
.section . rodata

. 13 X
Karthik Dantu /

University at Buffalo

B Deparimentof computersience—— Ha|loworld.s - |

School of Engineering and Applied Sciences

* .LCO: local label
* .string declares string constant

* .globl and .type directives 0

declare that we're defining a global |-Lce: |
]) .string "Hello, world"
function named main text

.globl main
.type main, @function

.file "helloworld.c"
.section . rodata

. 14 s X
Karthik Dantu /

