
‘-

1
Karthik Dantu

Caching

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

‘-

2
Karthik Dantu

Writing & Reading Memory

• Write
• Transfer data from CPU to memory
movq 8(%rsp),%rax

• “Store” operation

• Read
• Transfer data from memory to CPU
movq %rax, 8(%rsp)

• “Load” operation

From 5th lecture

‘-

3
Karthik Dantu

Traditional Bus Structure Connecting
CPU and Memory

• A bus is a collection of parallel wires that carry
address, data, and control signals.

• Buses are typically shared by multiple devices.

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

‘-

4
Karthik Dantu

Memory Read Transaction (1)

• CPU places address A on the memory bus.

ALU

Register file

Bus interface
A 0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

‘-

5
Karthik Dantu

Memory Read Transaction (2)

• Main memory reads A from the memory bus, retrieves word x, and
places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

‘-

6
Karthik Dantu

Memory Read Transaction (3)

• CPU read word x from the bus and copies it into register %rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x

‘-

7
Karthik Dantu

Memory Write Transaction (1)

• CPU places address A on bus. Main memory reads it and waits for the
corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

‘-

8
Karthik Dantu

Memory Write Transaction (2)

• CPU places data word y on the bus.

y
ALU

Register file

Bus interface
y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

‘-

9
Karthik Dantu

Memory Write Transaction (3)

• Main memory reads data word y from the bus and stores it at
address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

‘-

10
Karthik Dantu

Today

• The memory abstraction
• RAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends

‘-

11
Karthik Dantu

Random-Access Memory (RAM)

• Key features
• RAM is traditionally packaged as a chip.

- or embedded as part of processor chip
• Basic storage unit is normally a cell (one bit per cell).
• Multiple RAM chips form a memory.

• RAM comes in two varieties:
• SRAM (Static RAM)
• DRAM (Dynamic RAM)

‘-

12
Karthik Dantu

RAM Technologies

• DRAM

• 1 Transistor + 1 capacitor / bit
• Capacitor oriented vertically

• Must refresh state periodically

• SRAM

• 6 transistors / bit
• Holds state indefinitely

‘-

13
Karthik Dantu

SRAM vs DRAM Summary

• Trends
• SRAM scales with semiconductor technology

- Reaching its limits
• DRAM scaling limited by need for minimum capacitance

- Aspect ratio limits how deep can make capacitor
- Also reaching its limits

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
frame buffers

EDC: Error detection and correction

‘-

19
Karthik Dantu

Today

• The memory Abstraction
• DRAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends

‘-

20
Karthik Dantu

The CPU-Memory Gap

The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

‘-

21
Karthik Dantu

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental property of
computer programs known as locality.

‘-

22
Karthik Dantu

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

‘-

23
Karthik Dantu

Locality Example

• Data references
• Reference array elements in succession

(stride-1 reference pattern).
• Reference variable sum each iteration.

• Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial

‘-

24
Karthik Dantu

Qualitative Estimates of Locality

• Claim: Being able to look at code and get a
qualitative sense of its locality is a key skill for a
professional programmer.

• Question: Does this function have good locality
with respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Answer: yes

Hint: array layout
is row-major order

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •

‘-

25
Karthik Dantu

Locality Example

• Question: Does this function have good locality with respect to array
a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Answer: no, unless…

M is very small

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •

‘-

26
Karthik Dantu

Locality Example

• Question: Can you permute the loops so that the function scans the
3-d array a with a stride-1 reference pattern (and thus has good
spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

Answer: make j the inner loop

‘-

27
Karthik Dantu

Today

• The memory abstraction
• DRAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends

‘-

28
Karthik Dantu

Memory Hierarchies

• Some fundamental and enduring properties of hardware and
software:

• Fast storage technologies cost more per byte, have less capacity, and require
more power (heat!).

• The gap between CPU and main memory speed is widening.
• Well-written programs tend to exhibit good locality.

• These fundamental properties complement each other beautifully.

• They suggest an approach for organizing memory and storage systems
known as a memory hierarchy.

‘-

29
Karthik Dantu

Example Memory Hierarchy
Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

‘-

30
Karthik Dantu

Caches

• Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

• Fundamental idea of a memory hierarchy:
• For each k, the faster, smaller device at level k serves as a cache

for the larger, slower device at level k+1.
• Why do memory hierarchies work?

• Because of locality, programs tend to access the data at level k
more often than they access the data at level k+1.

• Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

• Big Idea (Ideal): The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

‘-

31
Karthik Dantu

General Cache Concepts

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

‘-

32
Karthik Dantu

General Cache Concepts: Hit

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

‘-

33
Karthik Dantu

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

‘-

34
Karthik Dantu

General Caching Concepts: 3 Types of Cache Misses

• Cold (compulsory) miss
• Cold misses occur because the cache starts empty and this is the

first reference to the block.

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger

than the cache.

• Conflict miss
• Most caches limit blocks at level k+1 to a small subset (sometimes

a singleton) of the block positions at level k.
- E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

• Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.
- E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

‘-

35
Karthik Dantu

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

‘-

36
Karthik Dantu

Today

• The memory abstraction
• RAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends

‘-

37
Karthik Dantu

Storage Technologies

• Magnetic Disks

• Store on magnetic
medium

• Electromechanical access

• Nonvolatile (Flash)
Memory

• Store as persistent charge
• Implemented with 3-D

structure
• 100+ levels of cells
• 3 bits data per cell

‘-

38
Karthik Dantu

What’s Inside A Disk Drive?

SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)

SCSI
connector

Image courtesy of Seagate Technology

‘-

44
Karthik Dantu

Disk Access Time

• Average time to access some target sector approximated

by:

• Taccess = Tavg seek + Tavg rotation + Tavg transfer

• Seek time (Tavg seek)

• Time to position heads over cylinder containing target sector.

• Typical Tavg seek is 3—9 ms

• Rotational latency (Tavg rotation)

• Time waiting for first bit of target sector to pass under r/w head.

• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

• Typical rotational rate = 7,200 RPMs

• Transfer time (Tavg transfer)

• Time to read the bits in the target sector.

• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

‘-

45
Karthik Dantu

Disk Access Time Example

• Given:
• Rotational rate = 7,200 RPM
• Average seek time = 9 ms
• Avg # sectors/track = 400

• Derived:
• Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
• Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms
• Taccess = 9 ms + 4 ms + 0.02 ms

• Important points:
• Access time dominated by seek time and rotational latency.
• First bit in a sector is the most expensive, the rest are free.
• SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

- Disk is about 40,000 times slower than SRAM,
- 2,500 times slower than DRAM.

‘-

50
Karthik Dantu

Nonvolatile Memories

• DRAM and SRAM are volatile memories
• Lose information if powered off.

• Nonvolatile memories retain value even if powered off
• Read-only memory (ROM): programmed during production
• Electrically eraseable PROM (EEPROM): electronic erase capability
• Flash memory: EEPROMs, with partial (block-level) erase capability

- Wears out after about 100,000 erasings
• 3D XPoint (Intel Optane) & emerging NVMs

- New materials

• Uses for Nonvolatile Memories
• Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)
• Solid state disks (replacing rotating disks)
• Disk caches

‘-

51
Karthik Dantu

Solid State Disks (SSDs)

• Pages: 512KB to 4KB, Blocks: 32 to 128 pages
• Data read/written in units of pages.
• Page can be written only after its block has been erased.
• A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

DRAM
Buffer

‘-

52
Karthik Dantu

SSD Performance Characteristics
• Benchmark of Samsung 940 EVO Plus

• Sequential access faster than random access
• Common theme in the memory hierarchy

• Random writes are somewhat slower
• Erasing a block takes a long time (~1 ms).
• Modifying a block page requires all other pages to be copied

to new block.
• Flash translation layer allows accumulating series of small

writes before doing block write.

Sequential read throughput 2,126 MB/s Sequential write tput 1,880 MB/s
Random read throughput 140 MB/s Random write tput 59 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

‘-

53
Karthik Dantu

SSD Tradeoffs vs Rotating Disks

• Advantages
• No moving parts à faster, less power, more rugged

• Disadvantages
• Have the potential to wear out

- Mitigated by “wear leveling logic” in flash translation layer
- E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of writes before they wear out
- Controller migrates data to minimize wear level

• In 2019, about 4 times more expensive per byte
- And, relative cost will keep dropping

• Applications
• MP3 players, smart phones, laptops
• Increasingly common in desktops and servers

‘-

54
Karthik Dantu

Summary

• The speed gap between CPU, memory and mass storage continues to
widen.

• Well-written programs exhibit a property called locality.

• Memory hierarchies based on caching close the gap by exploiting locality.

• Flash memory progress outpacing all other memory and storage
technologies (DRAM, SRAM, magnetic disk)

• Able to stack cells in three dimensions

‘-

55
Karthik Dantu

The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of
spatial and temporal locality.

• Compact way to characterize memory system performance.

‘-

56
Karthik Dantu

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
* array "data" with stride of "stride“,
* using 4x4 loop unrolling.
*/
int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and
measure the read
throughput(MB/s)

mountain/mountain.c

‘-

57
Karthik Dantu

The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of
spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

‘-

58
Karthik Dantu

Today

• Cache organization and operation
• Performance impact of caches

• The memory mountain
• Rearranging loops to improve spatial locality
• Using blocking to improve temporal locality

‘-

59
Karthik Dantu

Matrix Multiplication Example

• Description:
• Multiply N x N

matrices
• Matrix elements are

doubles (8 bytes)
• O(N3) total operations
• N reads per source

element
• N values summed per

destination
- but may be able to

hold in register

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

Variable sum
held in register

matmult/mm.c

‘-

60
Karthik Dantu

Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four doubles)
• Matrix dimension (N) is very large

- Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

‘-

61
Karthik Dantu

Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];
• accesses successive elements
• if block size (B) > sizeof(aij) bytes, exploit spatial locality

- miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];
• accesses distant elements
• no spatial locality!

- miss rate = 1 (i.e. 100%)

‘-

62
Karthik Dantu

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

‘-

63
Karthik Dantu

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)

‘-

64
Karthik Dantu

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)

‘-

65
Karthik Dantu

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

‘-

66
Karthik Dantu

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki
kji
ijk
jik
kij
ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration

‘-

67
Karthik Dantu

Today

• Cache organization and operation
• Performance impact of caches

• The memory mountain
• Rearranging loops to improve spatial locality
• Using blocking to improve temporal locality

‘-

68
Karthik Dantu

Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}

‘-

69
Karthik Dantu

Cache Miss Analysis

• Assume:
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)

• First iteration:
• n/8 + n = 9n/8 misses

• Afterwards in cache:
(schematic)

x=

n

x=
8 wide

‘-

70
Karthik Dantu

Cache Miss Analysis

• Assume:
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)

• Second iteration:
• Again:

n/8 + n = 9n/8 misses

• Total misses:
• 9n/8 n2 = (9/8) n3

n

x=
8 wide

‘-

71
Karthik Dantu

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i1++)

for (j1 = j; j1 < j+B; j1++)
for (k1 = k; k1 < k+B; k1++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c

‘-

72
Karthik Dantu

Cache Miss Analysis

• Assume:
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• First (block) iteration:
• B2/8 misses for each block
• 2n/B x B2/8 = nB/4

(omitting matrix c)

• Afterwards in cache
(schematic)

x=

x=

Block size B x B

n/B blocks

‘-

73
Karthik Dantu

Cache Miss Analysis

• Assume:
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration
• 2n/B x B2/8 = nB/4

• Total misses:
• nB/4 * (n/B)2 = n3/(4B)

x=

Block size B x B

n/B blocks

‘-

74
Karthik Dantu

Blocking Summary

• No blocking: (9/8) n3 misses

• Blocking: (1/(4B)) n3 misses

• Use largest block size B, such that B satisfies 3B2 < C
• Fit three blocks in cache! Two input, one output.

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

- Input data: 3n2, computation 2n3

- Every array elements used O(n) times!

• But program has to be written properly

‘-

75
Karthik Dantu

Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
• Focus on the inner loops, where bulk of computations and memory accesses

occur.
• Try to maximize spatial locality by reading data objects sequentially with

stride 1.
• Try to maximize temporal locality by using a data object as often as possible

once it’s read from memory.

