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Writing & Reading Memory

• Write
• Transfer data from CPU to memory
movq 8(%rsp),%rax

• “Store” operation

• Read
• Transfer data from memory to CPU
movq %rax, 8(%rsp)

• “Load” operation

From 5th lecture
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Traditional Bus Structure Connecting 
CPU and Memory

• A bus is a collection of parallel wires that carry 
address, data, and control signals.

• Buses are typically shared by multiple devices.

Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus
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Memory Read Transaction (1)

• CPU places address A on the memory bus.

ALU

Register file

Bus interface
A 0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax
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Memory Read Transaction (2)

• Main memory reads A from the memory bus, retrieves word x, and 
places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main 
memory

%rax

I/O bridge

Load operation: movq A, %rax
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Memory Read Transaction (3)

• CPU read word x from the bus and copies it into register %rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x
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Memory Write Transaction (1)

• CPU places address A on bus. Main memory reads it and waits for the 
corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory Write Transaction (2)

• CPU places data word y on the bus.

y
ALU

Register file

Bus interface
y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory Write Transaction (3)

• Main memory reads data word y from the bus and stores it at 
address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Today

• The memory abstraction
• RAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends
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Random-Access Memory (RAM)

• Key features
• RAM is traditionally packaged as a chip.

- or embedded as part of processor chip
• Basic storage unit is normally a cell (one bit per cell).
• Multiple RAM chips form a memory.

• RAM comes in two varieties:
• SRAM (Static RAM)
• DRAM (Dynamic RAM)
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RAM Technologies

• DRAM

• 1 Transistor + 1 capacitor / bit
• Capacitor oriented vertically

• Must refresh state periodically

• SRAM

• 6 transistors / bit
• Holds state indefinitely
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SRAM vs DRAM Summary

• Trends
• SRAM scales with semiconductor technology

- Reaching its limits
• DRAM scaling limited by need for minimum capacitance

- Aspect ratio limits how deep can make capacitor
- Also reaching its limits

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
frame buffers

EDC: Error detection and correction
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Today

• The memory Abstraction
• DRAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends
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The CPU-Memory Gap

The gap between DRAM, disk, and CPU speeds. 
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Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental property of 
computer programs known as locality.
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Locality

• Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
• Recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
• Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

• Data references
• Reference array elements in succession 

(stride-1 reference pattern).
• Reference variable sum each iteration.

• Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial
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Qualitative Estimates of Locality

• Claim: Being able to look at code and get a 
qualitative sense of its locality is a key skill for a 
professional programmer.

• Question: Does this function have good locality 
with respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Answer: yes

Hint: array layout
is row-major order

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •
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Locality Example

• Question: Does this function have good locality with respect to array 
a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Answer: no, unless…

M is very small

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •
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Locality Example

• Question: Can you permute the loops so that the function scans the 
3-d array a with a stride-1 reference pattern (and thus has good 
spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

Answer: make j the inner loop
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Today

• The memory abstraction
• DRAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends
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Memory Hierarchies

• Some fundamental and enduring properties of hardware and 
software:

• Fast storage technologies cost more per byte, have less capacity, and require 
more power (heat!). 

• The gap between CPU and main memory speed is widening.
• Well-written programs tend to exhibit good locality.

• These fundamental properties complement each other beautifully.

• They suggest an approach for organizing memory and storage systems 
known as a memory hierarchy.
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Example Memory  Hierarchy
Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.
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Caches

• Cache: A smaller, faster storage device that acts as a staging 
area for a subset of the data in a larger, slower device.

• Fundamental idea of a memory hierarchy:
• For each k, the faster, smaller device at level k serves as a cache 

for the larger, slower device at level k+1.
• Why do memory hierarchies work?

• Because of locality, programs tend to access the data at level k
more often than they access the data at level k+1. 

• Thus, the storage at level k+1 can be slower, and thus larger and 
cheaper per bit.

• Big Idea (Ideal):  The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top.
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General Cache Concepts

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 3 Types of Cache Misses

• Cold (compulsory) miss
• Cold misses occur because the cache starts empty and this is the 

first reference to the block.

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger 

than the cache.

• Conflict miss
• Most caches limit blocks at level k+1 to a small subset (sometimes 

a singleton) of the block positions at level k.
- E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

• Conflict misses occur when the level k cache is large enough, but 
multiple data objects all map to the same level k block.
- E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Examples of Caching in the Mem. Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware
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Today

• The memory abstraction
• RAM : main memory building block
• Locality of reference
• The memory hierarchy
• Storage technologies and trends
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Storage Technologies

• Magnetic Disks

• Store on magnetic 
medium

• Electromechanical access

• Nonvolatile (Flash) 
Memory

• Store as persistent charge
• Implemented with 3-D 

structure
• 100+ levels of cells
• 3 bits data per cell
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What’s Inside A Disk Drive?

SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)

SCSI
connector

Image courtesy of Seagate Technology
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Disk Access Time

• Average time to access some target sector approximated 

by:

• Taccess =  Tavg seek +  Tavg rotation + Tavg transfer

• Seek time (Tavg seek)

• Time to position heads over cylinder containing target sector.

• Typical  Tavg seek is 3—9 ms

• Rotational latency (Tavg rotation)

• Time waiting for first bit of target sector to pass under r/w head.

• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

• Typical rotational rate = 7,200 RPMs

• Transfer time (Tavg transfer)

• Time to read the bits in the target sector.

• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read
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Disk Access Time Example

• Given:
• Rotational rate = 7,200 RPM
• Average seek time = 9 ms
• Avg # sectors/track = 400

• Derived:
• Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
• Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms
• Taccess = 9 ms + 4 ms + 0.02 ms

• Important points:
• Access time dominated by seek time and rotational latency.
• First bit in a sector is the most expensive, the rest are free.
• SRAM access time is about  4 ns/doubleword, DRAM about  60 ns

- Disk is about 40,000 times slower than SRAM, 
- 2,500 times slower than DRAM.
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Nonvolatile Memories

• DRAM and SRAM are volatile memories
• Lose information if powered off.

• Nonvolatile memories retain value even if powered off
• Read-only memory (ROM): programmed during production
• Electrically eraseable PROM (EEPROM): electronic erase capability
• Flash memory: EEPROMs, with partial (block-level) erase capability

- Wears out after about 100,000 erasings
• 3D XPoint (Intel Optane) & emerging NVMs

- New materials

• Uses for Nonvolatile Memories
• Firmware programs stored in a ROM (BIOS, controllers for disks, 

network cards, graphics accelerators, security subsystems,…)
• Solid state disks (replacing rotating disks)
• Disk caches
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Solid State Disks (SSDs)

• Pages: 512KB to 4KB, Blocks: 32 to 128 pages
• Data read/written in units of pages. 
• Page can be written only after its block has been erased.
• A block wears out after about 100,000 repeated writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)

Requests to read and 
write logical disk blocks

DRAM
Buffer
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SSD Performance Characteristics
• Benchmark of Samsung 940 EVO Plus

• Sequential access faster than random access
• Common theme in the memory hierarchy

• Random writes are somewhat slower
• Erasing a block takes a long time (~1 ms).
• Modifying a block page requires all other pages to be copied 

to new block.
• Flash translation layer allows accumulating series of small 

writes before doing block write.

Sequential read throughput   2,126 MB/s Sequential write tput 1,880 MB/s
Random read throughput 140 MB/s Random write tput 59 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB
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SSD Tradeoffs vs Rotating Disks

• Advantages 
• No moving parts à faster, less power, more rugged

• Disadvantages
• Have the potential to wear out 

- Mitigated by “wear leveling logic” in flash translation layer
- E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of writes before they wear out
- Controller migrates data to minimize wear level

• In 2019, about 4 times more expensive per byte
- And, relative cost will keep dropping

• Applications
• MP3 players, smart phones, laptops
• Increasingly common in desktops and servers
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Summary

• The speed gap between CPU, memory and mass storage continues to 
widen.

• Well-written programs exhibit a property called locality.

• Memory hierarchies based on caching close the gap by exploiting locality.

• Flash memory progress outpacing all other memory and storage 
technologies (DRAM, SRAM, magnetic disk)

• Able to stack cells in three dimensions
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The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of 
spatial and temporal locality.

• Compact way to characterize memory system performance. 
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Memory Mountain Test Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of
*        array "data" with stride of "stride“, 
*        using 4x4 loop unrolling.                                                     
*/
int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; i < length; i++) {

acc0 = acc0 + data[i];
}
return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many 
combinations of elems
and stride.

For each elems and 
stride:

1. Call test() once to 
warm up the caches.

2. Call test() again and 
measure the read 
throughput(MB/s)

mountain/mountain.c
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The Memory Mountain

128m
32m
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2m
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Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
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Ridges 
of temporal 
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Mem
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L3

Aggressive 
prefetching
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Today

• Cache organization and operation
• Performance impact of caches

• The memory mountain
• Rearranging loops to improve spatial locality
• Using blocking to improve temporal locality
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Matrix Multiplication Example

• Description:
• Multiply N x N

matrices
• Matrix elements are 

doubles (8 bytes)
• O(N3) total operations
• N reads per source 

element
• N values summed per 

destination
- but may be able to 

hold in register

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four doubles)
• Matrix dimension (N) is very large

- Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];
• accesses successive elements
• if block size (B) > sizeof(aij) bytes, exploit spatial locality

- miss rate = sizeof(aij) / B

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];
• accesses distant elements
• no spatial locality!

- miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}
} 

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];   

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}



‘-

66
Karthik Dantu

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki
kji
ijk
jik
kij
ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration
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Today

• Cache organization and operation
• Performance impact of caches

• The memory mountain
• Rearranging loops to improve spatial locality
• Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)

• First iteration:
• n/8 + n = 9n/8 misses

• Afterwards in cache:
(schematic)

x=

n

x=
8 wide
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)

• Second iteration:
• Again:

n/8 + n = 9n/8 misses

• Total misses:
• 9n/8 n2 = (9/8) n3

n

x=
8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i1++)

for (j1 = j; j1 < j+B; j1++)
for (k1 = k; k1 < k+B; k1++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c
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Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)
• Three blocks       fit into cache: 3B2 < C

• First (block) iteration:
• B2/8 misses for each block
• 2n/B x B2/8 = nB/4

(omitting matrix c)

• Afterwards in cache
(schematic)

x=

x=

Block size B x B

n/B blocks
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Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles
• Cache size C << n (much smaller than n)
• Three blocks       fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration
• 2n/B x B2/8 = nB/4

• Total misses:
• nB/4 * (n/B)2 = n3/(4B)

x=

Block size B x B

n/B blocks
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Blocking Summary

• No blocking: (9/8) n3 misses

• Blocking:  (1/(4B)) n3 misses

• Use largest block size B, such that B satisfies 3B2 < C
• Fit three blocks in cache!  Two input, one output.

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

- Input data: 3n2, computation 2n3

- Every array elements used O(n) times!

• But program has to be written properly
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Cache Summary

• Cache memories can have significant performance impact

• You can write your programs to exploit this!
• Focus on the inner loops, where bulk of computations and memory accesses 

occur. 
• Try to maximize spatial locality by reading data objects sequentially with 

stride 1.
• Try to maximize temporal locality by using a data object as often as possible 

once it’s read from memory. 


