
‘-

1
Karthik Dantu

Programming Best Practices

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu



‘-

2
Karthik DantuKarthik Dantu

• Lab Exam 1 this week
No books, no Internet, no cheat sheets
Man pages, man pages, man pages
Please stop by a restroom, eat and hydrate before !

• PA1 out – Conway’s Game of Life

Administrivia



‘-

3
Karthik DantuKarthik Dantu

• Like every skill, the gap between a programmer 
and a good programmer is LARGE

• Good reasons for this difference
Talent
Knowledge
Experience
Practice

• You can get better on all these by adopting good 
programming practices

• Wonderful and lucrative skill to acquire!

Effective Programming



‘-

4
Karthik DantuKarthik Dantu

• Best working habits, already stressed these before
• Start Early
• Work diligently – hard and smart
• Think before you code
• Comment and Document
• Write a second draft

PP 101 – Work Habits



‘-

5
Karthik DantuKarthik Dantu

• Start programming early 
• You’ll have more time – but this is more than that
• Think about where and when you have 

programming insights
Shower?
Driving?
Walking?
In your sleep?

• Your sub-conscious works for you if you give it time

Work Habits - Start Early 



‘-

6
Karthik DantuKarthik Dantu

• Comment your code judiciously
Include insightful comments
Avoid useless/redundant ones
Comment should tell you more than what code tells you 
at a glance 

• Bad example
i++; /* Increment i */

• Document when writing the code
• Helps crystallize your ideas and identify logical 

errors

Work Habits – Comment and Document



‘-

7
Karthik DantuKarthik Dantu

• If you think your approach is getting unwieldy:
Stop and reconsider what you have learnt
Rewrite as necessary
Don’t try to fix your solution based on the code

Work Habits – Write a Second Draft

Plan to throw one away; you will anyhow. 
- Fred Brooks, The Mythical Man Month. 



‘-

8
Karthik DantuKarthik Dantu

• Hardest thing sometimes is getting started
• Find something you know how to do and do it
• Do routine processing

Process program arguments
Perform simple calculations
Define the data structures

• Once you start, it usually seems more tractable

Work Habits – Getting Started



‘-

9
Karthik DantuKarthik Dantu

• Read documentation
Man pages
API specifications
Standards

• Read programming texts
Several excellent texts (like K&R)

• Read code (future)
Learn from good programmers
Open-Source FTW!

• Write code
• Write documentation

Work Habits – Read and Write



‘-

10
Karthik DantuKarthik Dantu

• For most big projects, we recommend a 
two-pass process:

• Divide the task Top-Down – recursively
Identify the problem to be solved
Determine what you need to solve it
Define function/data structure to get what you 
need
Identify common functionality when you do 
this

Top Down and Bottom Up



‘-

11
Karthik DantuKarthik Dantu

• For most big projects, we 
recommend a two-pass process:

• Implement Bottom-Up
Identify sub-tasks you know how to 
solve
Solve them
Identify sub-tasks that can now be 
solved

Top Down and Bottom Up



‘-

12
Karthik DantuKarthik Dantu

• Real-world projects are complex
• You manage them by

Identifying modules and abstracting them into functions
Defining and using constants
Creating data structures to simplify computation
Using standard library functions

Tackling Complexity



‘-

13
Karthik DantuKarthik Dantu

• Using tools effectively is critical to efficient 

programming

• Tools include

Editor

Compiler

System tools such as make
A good debugger (gdb)

Version Control tools (git)

Text and data processing tools

Test suites you develop

Improving Programming Efficiency

In the long run, it is worth learning essential tools. They will pay back BIG TIME!



‘-

14
Karthik DantuKarthik Dantu

• Find a good editor, and TRUST it
• If you think something’s weird, figure out why
• For example 

It is indenting funny à You misplaced braces
Colored a variable named unexpectedly à You are 
shadowing a keyword/system variable
It can’t find a completion à You mistyped the command
…

Useful tools - Editor



‘-

15
Karthik DantuKarthik Dantu

• Compiler
Can help in producing correct code
Can also help debug (-Wall, maybe –Wextra)
Silence warnings
Use the preprocessor for debugging

• Debugger
Can’t afford NOT to learn gdb
Know when to printf() and when to gdb
Explore gdb features

Compiler/Debugger



‘-

16
Karthik DantuKarthik Dantu

• Format your code precisely
• Just pick a style – and stick to it
• Badly indented code should bother you
• Code formatting helps spot logical errors

Work Habits – Code Format



‘-

17
Karthik DantuKarthik Dantu

• Don’t change code without forethought
• A change should address an issue – know what 

the issue is before changing
• It is always better to take longer and understand 

the problem
• Programming by Brownian motion – bad short 

term and long term
• Quick fixes cover up problems instead of fixing 

them 

Work Habits – Program With a Purpose



‘-

18
Karthik DantuKarthik Dantu

• Cultivate good work habits
• Design programs purposefully
• Learn/use your tools!
• Practice good style and form
• Debug/edit with a plan

Only way to become a better programmer is by 
programming !

Summary



‘-

19
Karthik DantuKarthik Dantu

No required readings this class – all are optional
• https://www.topcoder.com/blog/coding-best-practices/
• https://www.doc.ic.ac.uk/lab/cplus/cstyle.html
• Andrew Hunt and Dave Thomas. The Pragmatic Programmer: 

From Journeyman to Master. Addison-Wesley, 1999.
• Frederick P. Brooks Jr. The Mythical Man-Month: Essays on 

Software Engineering. 20th Anniversary Edition. Addison-Wesley, 
1995.

• Brian W. Kernighan and Rob Pike. The Practice of 
Programming. Addison-Wesley, 1999.

Optional Reading

https://www.topcoder.com/blog/coding-best-practices/
https://www.topcoder.com/blog/coding-best-practices/
https://www.doc.ic.ac.uk/lab/cplus/cstyle.html

