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* Midterm — postponed to Oct 11
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e Lab exam 2 next week
No books, no notes

No Internet including Google
Translate
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* PA2 —please get started
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* C has two types of data types: scalars and aggregates
* Ascalaris a data type that contains a single value

* In C, scalar types are:
Arithmetic types (Integers, Floats, char)
Pointers (special integers)

* Aggregates contain collections of scalar values

* In C, aggregate data types are
Arrays — collections of scalars of the same data type
Structs — collections of scalars of different data types
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* Many data types must be located in memory
according to certain rules

* |n most cases, this is not obvious

* Aggregate types, and pointers to aggregate types
demonstrate this

* We will explore this through alignment and stride
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* Void pointers are useful for raw memory manipulation

* You can use it to put arbitrary values to individual
bytes in memory

* You will need this in PA3 and PA4

e We will use void *to

Pass a pointer of an arbitrary type
Read and write arbitrary types of memory
Manipulate memory without respecting alignment and stride
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* Recall that

Memory bus has a certain width
Memory transfers data in words

* Most systems can only access words in memory
on addresses divisible by word size

* Typically, the address of a value must be evenly
divisible by the size of its data type

* E.g,if int is 32 bits, the address must be divisible
by 4
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* Scalars must typically be aligned to their size
* Alignment rules vary with architecture
* Some platforms can still access unaligned scalars

* Some platforms will raise a hardware error for
unaligned access

* Most platforms will suffer a performance penalty
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* The first element of an array of scalars is typically
aligned to the size of the array element

* This aligns all items in the array

* For other types of arrays, things can get more
complicated

* To understand the alignment of aggregate types,
we must understand structure layout
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* The members of a structure are adjacent in memory
* This is similar to scalars in an array

* However, there are additional considerations regarding
layout

* The alignment of array members must be preserved

* Padding is inserted between values to bring them into
alignment

* Padding is unused memory and you cannot assume its
value
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* Members are adjacent

* Every member is laid out in order
* Lets assume float is 32-bit

struct ComplexFloat {
float real;

float imaginary;
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* |n a struct, padding may be
applied between values

* Lets assume pointers are 8
bytes long

struct IntList {
int value;

struct IntList *next;

}
* This structis 16 bytes with
4 bytes of padding
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* For padding in structures to work, the struct
must be aligned

* Consider the previous example

* |f the address of the struct is divisible by 4, 0x8 next
value is aligned but next might not be x4
* |f the address of the struct is divisible by 8, 0x0 value

then both are aligned

* The struct itself is aligned to the
requirements of its largest member

. 12 X
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* Recall that the standard allocator doesn’t know what you're
allocating

* For this reason, malloc () et al. normally align to the
largest system requirement

* This ensures that any properly aligned structure will be

d
o« T

igned

nis leads to overhead which can cause significant waste

e We'll see much more about this later
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* Stride is closely related to alignment, yet different

* Stride is the difference between two pointers to adjacent values
of a particular type

* For simple types, stride is the same as size

* Forexample:
If intis 32 bits, sizeof (int) is 4 and the stride of int *is 4

If double is 64 bits, sizeof (double) is 8 and the stride of double
* IS 8

* For aggregate types, this can get more complicated
* void * Is a special case, and its stride is 1 A
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e Consider this struct struct IntList {

struct IntList *next;

int value;

}
* |ts memory layout is as follows _
Ox8 | value
Bx0 next

* Padding here is to adjust stride to preserve alignment
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* Pointers are integer types, and can be computed
* Pointer arithmetic operates in stride-sized chunks
(This is why pointers can dereference like arrays!)
double *dptr = &somedouble;

* |f the value of dptr were 0, dptr + 1 would be
eight, not one

* This is because a double is 8 bytes wide.
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* Strides for aggregate data types can be large

* Consider
struct Big {

char array[256];

}
struct Big *b = NULL;

e |Inthiscase, b + 1 isthe address 256
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#include <stdio.h>

volid dump mem(const void *mem , size t len) {
const char *buffer = mem; // Cast to char *
size t 1;
for (1 = 0; 1 < len; 1i++) {
if (1 >0 && 1 % 8 == 0) { printf("\n"); }
printf("%02x ", buffer[i] & 0xff);
}
1if (1> 1 && 1 % 8 1=1) { puts(""); } Q.

} | 18 X
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const char *buffer = mem;

* What is this for?

* “We are going to interpret mem as an array of bytes”
if (1 >0 && 1 % 8 == 0) { printf("\n");

* “Print a newline fter everyeigth byte except the first”
printf("%02x ", buffer[i] & O0xff);

* Necessary to avoid sign extension
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* Pointers to void * can be used to store and representations
that are inconveniently represented in C

* Consider the following structure
struct Inconvenient {
int fourbytes;
long eightbytes;

}
* Structure contains 12 bytes of data but occupies 16 bytes

* To communicate this structure, we wish to send only12 bytes

. 20 X
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Communicating such data is often done via serialization
Serialization is the storage of data into a byte sequence
In C, we do this with pointers, and often void pointers

Consider:
void *p = malloc(1l2);

*(int *)p = inconvenient.fourbytes;
*(long *)(p + sizeof(int)) = 1nconvenient.eightbytes;

This builds a 12-byte structure without padding
In the process, it violates alignment restrictions
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Karthik Dantu /



University at Buffalo

QB | Department of C ter Sci . -
e computerscence = laxble sizes

School of Engineering and Applied Sciences

* Another use of void pointer representation is flexible sizes
* Consider a structure (not legal C)

struct Variable {
size t nentries;
int entries[nentries];
char name] ];

} variable;

 This structure does not have a well-defined size
* |ts size depends on nentries and the size of name

. 22« X
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size t nentries = 3;
int entries [] = { 42, 31337 , 0x1701D };
const char *name = "Caleb Widowgast";
void *buf = malloc(sizeof(size t)
+ nentries * sizeof(int) +
strlen(name) + 1);

buf;

volid *cur
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*(slize t *) cur = nentries;
cur += sizeof(size t);
for (int i = 0; i < nentries; i++) {
*( 1nt *) cur = entries[1];
cur += sizeof(int);
}
for (int i = 0; i <= strlen(name); i++) {

*( char *) cur ++ = name[i];

| 24« X
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Packing the Data (3)

size t nentries = 3;

int entries []

= { 42, 31337 , 0x1701D };

const char *name = "Caleb Widowgast";

dump mem( )

03
2a
1d
62
61

0o
0o
/0
20
/3

00
00
01
57/
74

0o
00
00
69
0o

0o 00 00 00
69 /a 00 00
43 61 6C 65
64 6f 77 67
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* Integers, pointers, and floating point numbers are scalar types
* Arrays and structures are aggregate types

* Structures can contain members of mixed type

* Scalar types must be aligned

* Aggregate types must align for scalars

* Allocation normally aligns to the largest type

* Pointer arithmetic uses stride in computations

* void * has a stride of 1

* The void * type can be used for raw memory manipulation N
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