
‘-

1
Karthik Dantu

Alignment, Padding and Packing

Karthik Dantu
Ethan Blanton

Computer Science and Engineering
University at Buffalo

kdantu@buffalo.edu

‘-

2
Karthik DantuKarthik Dantu

• Midterm – postponed to Oct 11
(Friday) in class

• Lab exam 2 next week
No books, no notes
No Internet including Google
Translate
Please hydrate and visit restroom
before

• PA2 – please get started

Administrivia

‘-

3
Karthik DantuKarthik Dantu

• C has two types of data types: scalars and aggregates
• A scalar is a data type that contains a single value
• In C, scalar types are:

Arithmetic types (Integers, Floats, char)
Pointers (special integers)

• Aggregates contain collections of scalar values
• In C, aggregate data types are

Arrays – collections of scalars of the same data type
Structs – collections of scalars of different data types

Scalars vs Aggregates

‘-

4
Karthik DantuKarthik Dantu

• Many data types must be located in memory
according to certain rules

• In most cases, this is not obvious
• Aggregate types, and pointers to aggregate types

demonstrate this
• We will explore this through alignment and stride

Memory Layout

‘-

5
Karthik DantuKarthik Dantu

• Void pointers are useful for raw memory manipulation
• You can use it to put arbitrary values to individual

bytes in memory
• You will need this in PA3 and PA4
• We will use void * to

Pass a pointer of an arbitrary type
Read and write arbitrary types of memory
Manipulate memory without respecting alignment and stride

Aside: void Pointers

‘-

6
Karthik DantuKarthik Dantu

• Recall that
Memory bus has a certain width
Memory transfers data in words

• Most systems can only access words in memory
on addresses divisible by word size

• Typically, the address of a value must be evenly
divisible by the size of its data type

• E.g., if int is 32 bits, the address must be divisible
by 4

Alignment

‘-

7
Karthik DantuKarthik Dantu

• Scalars must typically be aligned to their size
• Alignment rules vary with architecture
• Some platforms can still access unaligned scalars
• Some platforms will raise a hardware error for

unaligned access
• Most platforms will suffer a performance penalty

Scalar Layout

‘-

8
Karthik DantuKarthik Dantu

• The first element of an array of scalars is typically
aligned to the size of the array element

• This aligns all items in the array
• For other types of arrays, things can get more

complicated
• To understand the alignment of aggregate types,

we must understand structure layout

Array Layout

‘-

9
Karthik DantuKarthik Dantu

• The members of a structure are adjacent in memory
• This is similar to scalars in an array
• However, there are additional considerations regarding

layout
• The alignment of array members must be preserved
• Padding is inserted between values to bring them into

alignment
• Padding is unused memory and you cannot assume its

value

Structure Layout

‘-

10
Karthik DantuKarthik Dantu

• Members are adjacent
• Every member is laid out in order
• Lets assume float is 32-bit

Simple Layout

struct ComplexFloat {
float real;
float imaginary;

}

‘-

11
Karthik DantuKarthik Dantu

• In a struct, padding may be
applied between values

• Lets assume pointers are 8
bytes long

• This struct is 16 bytes with
4 bytes of padding

Struct Padding

struct IntList {
int value;
struct IntList *next;

}

‘-

12
Karthik DantuKarthik Dantu

• For padding in structures to work, the struct
must be aligned

• Consider the previous example
• If the address of the struct is divisible by 4,

value is aligned but next might not be
• If the address of the struct is divisible by 8,

then both are aligned
• The struct itself is aligned to the

requirements of its largest member

Struct Padding

‘-

13
Karthik DantuKarthik Dantu

• Recall that the standard allocator doesn’t know what you’re
allocating

• For this reason, malloc() et al. normally align to the
largest system requirement

• This ensures that any properly aligned structure will be
aligned

• This leads to overhead which can cause significant waste
• We’ll see much more about this later

Alignment and Allocation

‘-

14
Karthik DantuKarthik Dantu

• Stride is closely related to alignment, yet different
• Stride is the difference between two pointers to adjacent values

of a particular type
• For simple types, stride is the same as size
• For example:

If int is 32 bits, sizeof(int) is 4 and the stride of int * is 4
If double is 64 bits, sizeof(double) is 8 and the stride of double
* is 8

• For aggregate types, this can get more complicated
• void * is a special case, and its stride is 1

Stride

‘-

15
Karthik DantuKarthik Dantu

• Consider this struct

• Its memory layout is as follows

• Padding here is to adjust stride to preserve alignment

Stride in Aggregate Types

struct IntList {
struct IntList *next;
int value;
}

‘-

16
Karthik DantuKarthik Dantu

• Pointers are integer types, and can be computed
• Pointer arithmetic operates in stride-sized chunks
(This is why pointers can dereference like arrays!)
double *dptr = &somedouble;
• If the value of dptr were 0, dptr + 1 would be

eight, not one
• This is because a double is 8 bytes wide.

Pointer Arithmetic

‘-

17
Karthik DantuKarthik Dantu

• Strides for aggregate data types can be large
• Consider

• In this case, b + 1 is the address 256

Pointer Arithmetic – Aggregate Types

struct Big {
char array[256];

}
struct Big *b = NULL;

‘-

18
Karthik DantuKarthik Dantu

#include <stdio.h>
void dump_mem(const void *mem , size_t len) {
const char *buffer = mem; // Cast to char *
size_t i;
for (i = 0; i < len; i++) {
if (i > 0 && i % 8 == 0) { printf("\n"); }
printf("%02x ", buffer[i] & 0xff);

}
if (i > 1 && i % 8 != 1) { puts(""); }

}

Dumping Memory – dump_mem

‘-

19
Karthik DantuKarthik Dantu

const char *buffer = mem;
• What is this for?
• “We are going to interpret mem as an array of bytes”
if (i > 0 && i % 8 == 0) { printf("\n"); }

• “Print a newline fter everyeigth byte except the first”
printf("%02x ", buffer[i] & 0xff);

• Necessary to avoid sign extension

dump_mem Details

‘-

20
Karthik DantuKarthik Dantu

• Pointers to void * can be used to store and representations
that are inconveniently represented in C

• Consider the following structure

• Structure contains 12 bytes of data but occupies 16 bytes
• To communicate this structure, we wish to send only12 bytes

Inconvenient Representation

struct Inconvenient {
int fourbytes;
long eightbytes;

}

‘-

21
Karthik DantuKarthik Dantu

• Communicating such data is often done via serialization
• Serialization is the storage of data into a byte sequence
• In C, we do this with pointers, and often void pointers
• Consider:

• This builds a 12-byte structure without padding
• In the process, it violates alignment restrictions

Serialization

void *p = malloc(12);
*(int *)p = inconvenient.fourbytes;
*(long *)(p + sizeof(int)) = inconvenient.eightbytes;

‘-

22
Karthik DantuKarthik Dantu

• Another use of void pointer representation is flexible sizes
• Consider a structure (not legal C)

• This structure does not have a well-defined size
• Its size depends on nentries and the size of name

Flexible sizes

struct Variable {
size_t nentries;
int entries[nentries];
char name[];

} variable;

‘-

23
Karthik DantuKarthik Dantu

size_t nentries = 3;
int entries [] = { 42, 31337 , 0x1701D };
const char *name = "Caleb Widowgast";
void *buf = malloc(sizeof(size_t)

+ nentries * sizeof(int) +
strlen(name) + 1);

void *cur = buf;

Packing the Data

‘-

24
Karthik DantuKarthik Dantu

Packing the Data (2)

*(size_t *) cur = nentries;
cur += sizeof(size_t);
for (int i = 0; i < nentries; i++) {
*(int *) cur = entries[i];
cur += sizeof(int);

}
for (int i = 0; i <= strlen(name); i++) {
*(char *) cur ++ = name[i];

}

‘-

25
Karthik DantuKarthik Dantu

size_t nentries = 3;
int entries [] = { 42, 31337 , 0x1701D };
const char *name = "Caleb Widowgast";

dump_mem()

Packing the Data (3)

‘-

26
Karthik DantuKarthik Dantu

• Integers, pointers, and floating point numbers are scalar types
• Arrays and structures are aggregate types
• Structures can contain members of mixed type
• Scalar types must be aligned
• Aggregate types must align for scalars
• Allocation normally aligns to the largest type
• Pointer arithmetic uses stride in computations
• void * has a stride of 1
• The void * type can be used for raw memory manipulation

Summary

