G5

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Alignment, Padding and Packing

Karthik Dantu
Ethan Blanton
Computer Science and Engineering

University at Buffalo
kdantu@buffalo.edu

Karthik Dantu

University at Buffalo

QB | Department of Computer Science . ==
and Engineering Administrivia

School of Engineering and Applied Sciences

* Midterm — postponed to Oct 11
(Friday) in class

60

e Lab exam 2 next week
No books, no notes

No Internet including Google
Translate

Please hydrate and visit restroom 15
before \

Jul 22,2019 Aug 5,2019 Aug 19,2019 Sep2,2019 Sep 16, 2019

45

30

* PA2 —please get started

2 X
Karthik Dantu /

University at Buffalo

B peparnenof Compuersience— Scalars vs Aggregates

School of Engineering and Applied Sciences

* C has two types of data types: scalars and aggregates
* Ascalaris a data type that contains a single value

* In C, scalar types are:
Arithmetic types (Integers, Floats, char)
Pointers (special integers)

* Aggregates contain collections of scalar values

* In C, aggregate data types are
Arrays — collections of scalars of the same data type
Structs — collections of scalars of different data types

Karthik Dantu

University at Buffalo

B peparinentof compuersience—— \lemory Layout

School of Engineering and Applied Sciences

* Many data types must be located in memory
according to certain rules

* |n most cases, this is not obvious

* Aggregate types, and pointers to aggregate types
demonstrate this

* We will explore this through alignment and stride

Karthik Dantu

University at Buffalo

B pepartmentof Computer scenee A gjd@: void Pointers

School of Engineering and Applied Sciences

* Void pointers are useful for raw memory manipulation

* You can use it to put arbitrary values to individual
bytes in memory

* You will need this in PA3 and PA4

e We will use void *to

Pass a pointer of an arbitrary type
Read and write arbitrary types of memory
Manipulate memory without respecting alignment and stride

Karthik Dantu

University at Buffalo

QB | Department of Computer Science "
ancFI)Engineering ’ AI I g n m e nt

School of Engineering and Applied Sciences

* Recall that

Memory bus has a certain width
Memory transfers data in words

* Most systems can only access words in memory
on addresses divisible by word size

* Typically, the address of a value must be evenly
divisible by the size of its data type

* E.g,if int is 32 bits, the address must be divisible
by 4

Karthik Dantu

University at Buffalo

QB | Department of C ter Sci
e ompuersdence - Scalar Layout

School of Engineering and Applied Sciences

* Scalars must typically be aligned to their size
* Alignment rules vary with architecture
* Some platforms can still access unaligned scalars

* Some platforms will raise a hardware error for
unaligned access

* Most platforms will suffer a performance penalty

Karthik Dantu

University at Buffalo

GB | Department of Computer Sci
i tngneenng ersaene - Array Layout

School of Engineering and Applied Sciences

* The first element of an array of scalars is typically
aligned to the size of the array element

* This aligns all items in the array

* For other types of arrays, things can get more
complicated

* To understand the alignment of aggregate types,
we must understand structure layout

Karthik Dantu

University at Buffalo

| Depariment of omputerscence - Strycture Layout

School of Engineering and Applied Sciences

* The members of a structure are adjacent in memory
* This is similar to scalars in an array

* However, there are additional considerations regarding
layout

* The alignment of array members must be preserved

* Padding is inserted between values to bring them into
alignment

* Padding is unused memory and you cannot assume its
value

Karthik Dantu

University at Buffalo

B Depriment o Computerscence - Simple Layout

School of Engineering and Applied Sciences

* Members are adjacent

* Every member is laid out in order
* Lets assume float is 32-bit

struct ComplexFloat {
float real;

float imaginary;

Karthik Dantu

x4
0x0

imaginary

real

sity at Buffalo

e Esgz:;?s:;?:;‘mfS“e“ce Struct Padding

School of Engineering and Applied Scie

* |n a struct, padding may be
applied between values

* Lets assume pointers are 8
bytes long

struct IntList {
int value;

struct IntList *next;

}
* This structis 16 bytes with
4 bytes of padding

Karthik Dantu

Ox8
0x4
0x0

next

value

iversity at Buffalo

Unive
| Deprmentiomersene - Struct Padding

School of Engineering and Applied Sciences

* For padding in structures to work, the struct
must be aligned

* Consider the previous example

* |f the address of the struct is divisible by 4, 0x8 next
value is aligned but next might not be x4
* |f the address of the struct is divisible by 8, 0x0 value

then both are aligned

* The struct itself is aligned to the
requirements of its largest member

. 12 X
Karthik Dantu /

University at Buffalo

8 Depmentof computersience—— Alignment and Allocation

School of Engineering and Applied Sciences

* Recall that the standard allocator doesn’t know what you're
allocating

* For this reason, malloc () et al. normally align to the
largest system requirement

* This ensures that any properly aligned structure will be

d
o« T

igned

nis leads to overhead which can cause significant waste

e We'll see much more about this later

Karthik Dantu

University at Buffalo

B | Department of Computer Science Strl d e
and Engineering
School of Engineering and Applied Sciences

* Stride is closely related to alignment, yet different

* Stride is the difference between two pointers to adjacent values
of a particular type

* For simple types, stride is the same as size

* Forexample:
If intis 32 bits, sizeof (int) is 4 and the stride of int *is 4

If double is 64 bits, sizeof (double) is 8 and the stride of double
* IS 8

* For aggregate types, this can get more complicated
* void * Is a special case, and its stride is 1 A

. 14 s X
Karthik Dantu /

University at Buffalo

8 bepmentof comeutersience - Stride in Aggregate Types

School of Engineering and Applied Sciences

e Consider this struct struct IntList {

struct IntList *next;

int value;

}
* |ts memory layout is as follows _
Ox8 | value
Bx0 next

* Padding here is to adjust stride to preserve alignment

. 15 /{ \\ S
Karthik Dantu /

sity at Buffalo

s Er?ﬁ;“g?ﬁe”e“r?:fmp“” cence Pointer Arithmetic

School of Engineering and Applied Scie

* Pointers are integer types, and can be computed
* Pointer arithmetic operates in stride-sized chunks
(This is why pointers can dereference like arrays!)
double *dptr = &somedouble;

* |f the value of dptr were 0, dptr + 1 would be
eight, not one

* This is because a double is 8 bytes wide.

Karthik Dantu

iversity at Buffalo

Y peprmen o compuersciee— Pyinter Arithmetic — Aggregate Types

School of Engineering and Applied Sciences

* Strides for aggregate data types can be large

* Consider
struct Big {

char array[256];

}
struct Big *b = NULL;

e |Inthiscase, b + 1 isthe address 256

. 17 /{ \\ S
Karthik Dantu /

University at Buffalo

38 pepariment of computerscence - umping Memory — dump mem

School of Engineering and Applied Sciences

#include <stdio.h>

volid dump mem(const void *mem , size t len) {
const char *buffer = mem; // Cast to char *
size t 1;
for (1 = 0; 1 < len; 1i++) {
if (1 >0 && 1 % 8 == 0) { printf("\n"); }
printf("%02x ", buffer[i] & 0xff);
}
1if (1> 1 && 1 % 8 1=1) { puts(""); } Q.

} | 18 X
Karthik Dantu /

University at Buffalo

G5 g);g%;tgr?r]e:;r?:gComputer Science dump_m em D et a I I S

School of Engineering and Applied Sciences

const char *buffer = mem;

* What is this for?

* “We are going to interpret mem as an array of bytes”
if (1 >0 && 1 % 8 == 0) { printf("\n");

* “Print a newline fter everyeigth byte except the first”
printf("%02x ", buffer[i] & O0xff);

* Necessary to avoid sign extension

Karthik Dantu

}

University at Buffalo

B e ofcompuersience— [nconvenient Representation

School of Engineering and Applied Sciences

* Pointers to void * can be used to store and representations
that are inconveniently represented in C

* Consider the following structure
struct Inconvenient {
int fourbytes;
long eightbytes;

}
* Structure contains 12 bytes of data but occupies 16 bytes

* To communicate this structure, we wish to send only12 bytes

. 20 X
Karthik Dantu /

University at Buffalo

G | Department of C ter Sci . - -
e oompuersdence— Sarialization

School of Engineering and Applied Sciences

Communicating such data is often done via serialization
Serialization is the storage of data into a byte sequence
In C, we do this with pointers, and often void pointers

Consider:
void *p = malloc(1l2);

*(int *)p = inconvenient.fourbytes;
*(long *)(p + sizeof(int)) = 1nconvenient.eightbytes;

This builds a 12-byte structure without padding
In the process, it violates alignment restrictions

. 21« X
Karthik Dantu /

University at Buffalo

QB | Department of C ter Sci . -
e computerscence = laxble sizes

School of Engineering and Applied Sciences

* Another use of void pointer representation is flexible sizes
* Consider a structure (not legal C)

struct Variable {
size t nentries;
int entries[nentries];
char name]];

} variable;

 This structure does not have a well-defined size
* |ts size depends on nentries and the size of name

. 22« X
Karthik Dantu /

University at Buffalo

Gh Department of Computer Science P a C kl n g th e D ata

and Engineering
School of Engineering and Applied Sciences

size t nentries = 3;
int entries [] = { 42, 31337 , 0x1701D };
const char *name = "Caleb Widowgast";
void *buf = malloc(sizeof(size t)
+ nentries * sizeof(int) +
strlen(name) + 1);

buf;

volid *cur

Karthik Dantu

University at Buffalo

W pemen s ompersies Pgcking the Data (2)

School of Engineering and Applied Sciences

*(slize t *) cur = nentries;
cur += sizeof(size t);
for (int i = 0; i < nentries; i++) {
*(1nt *) cur = entries[1];
cur += sizeof(int);
}
for (int i = 0; i <= strlen(name); i++) {

*(char *) cur ++ = name[i];

| 24« X
Karthik Dantu .

rsity at Buffalo

Universi
= Department of Computer Science

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Sciences

Packing the Data (3)

size t nentries = 3;

int entries []

= { 42, 31337 , 0x1701D };

const char *name = "Caleb Widowgast";

dump mem()

03
2a
1d
62
61

0o
0o
/0
20
/3

00
00
01
57/
74

0o
00
00
69
0o

0o 00 00 00
69 /a 00 00
43 61 6C 65
64 6f 77 67

Karthik Dantu

University at Buffalo

QB | Department of Computer Science
an(!IDEngineering ’ S U m m a ry

School of Engineering and Applied Sciences

* Integers, pointers, and floating point numbers are scalar types
* Arrays and structures are aggregate types

* Structures can contain members of mixed type

* Scalar types must be aligned

* Aggregate types must align for scalars

* Allocation normally aligns to the largest type

* Pointer arithmetic uses stride in computations

* void * has a stride of 1

* The void * type can be used for raw memory manipulation N

. 26« X
Karthik Dantu /

