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Introduction

7

% Modern mobile devices
> Enhanced computing
> Multiple interaction modalities
> Multiple connectivity modalities
> Lots of sensing
% Advanced sensing capabilities enabled

richer set of applications
> Digital manufacturing
> Mobile interactive games
> Service robots
> Collaborative meeting

% Such applications need spatial sensing

> Place recognition
> Localization
> Path estimation
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Visual-SLAM Overview (1/2)

% Visual-SLAM is a spatial sensing algorithm

to map the environment and localize the

camera with respect to the absolute
coordinate system
% Visual-SLAM systems
> RGBD-SLAM
>  RTAB-Map
> VINS
> ORB-SLAM2
% Three main modules
> Tracking
> Local mapping

Images

Loop
Detection

Global Bundle

> Loop closing
% All modules work on a shared global-map
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Visual-SLAM Overview (2/2)

0.

% Tracking module

> Continuously process incoming images
> Detect features (SIFT, SURF, ORB) —
> Match features between reference and

current frames
> Create new keyframe

0.

%  Local-mapping module
> Run for every new keyframe

. Local Bundl Looj
> Local bundle adjustment
>  Keyframe culling
Global Bundle
% Loop-closing module

> Try to detect loop after every new keyframe
> Global bundle adjustment
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Visual-SLAM on Mobile Devices (1/2)

—— ORB-SLAM2 JTX2
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Challenge: High overhead on mobile device resources
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% Running three computational-heavy modules,
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> Long-term operation
> Running other applications services
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% Challenge: High overhead on mobile device J Full Map

resources Real-World /

% Idea: use Edge-Computing architecture
> Encourages the use of split architecture to

deploy applications across mobile-edge
> (Can be as close as one hop away over the

local network .
= | Edge-SLAM | Full Map | e
> Has minimal effect on performance and / L
¥ i N = -
accuracy Real-World e \

> (Challenges?
m  Tight coupling of Visual-SLAM

modules £ | e
4 . Edge
Device ‘ Device
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Edge-SLAM Overview (1/2)

Images
% Goals
> Reduce usage of mobile device resources
> Maintain a low constant rate of resource
usage on mobile device
> Minimal effect on accuracy

% Architecture
> Split modules between mobile device and S e

Visual-SLAM

edge

Use a local-map on mobile device
Maintain the global-map on edge
Introduce two-way communication between

YVYYV

tracking and local-mapping modules to
share updates

Edge-SLAM
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Edge-SLAM Overview (2/2)

% Implementation
>  Use ORB-SLAM2 as a prototype
m  State-of-the-art Visual-SLAM system
for Monocular, RGB-D, and Stereo
cameras

Open-source system

20 classes and 18,000 LOC

Three threads (one per module) run
simultaneously

m  Fourth thread runs on-demand for
full bundle adjustment (FBA)

m  All threads work on shared
global-map structure that is managed
through a complex locking
mechanism which increases the
coupling level of the threads
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ORB-SLAM2: Tracking Thread

s Extract ORB features
% Use features to estimate and optimize

camera pose
> Iftracking is lost, query the recognition
database for keyframe candidates for global
relocalization
% Tracklocal map
> Project the map into the frame and search
more map-point correspondences
% New keyframe decision
> Decide whether a frame should be added to
map as keyframe or not by evaluating 5
conditions
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ORB-SLAM2: Local-Mapping Thread

% Insert new keyframe into global-map
% Recent map-points culling
> Ensure that map-points are trackable and Tracking
not wrongly riangulated =
pu or Relocalization cist
% New map-point creation oo ——
s c
> (Create new map-points by triangulating ORB Recognition _ Global Map erion |18
from connected keyframes Recont || 5
MapPpints T,
% Local bundle adjustment — " ] &
ecognition ovisibility e . .
> Optimize current keyframe, all connected e
keyframes, and all map-points seen by those A
Adjustment
kerrameS Update || Full Bundle Optimize
. Map Adjustment Essential Compute Query Local
% Local keyframes culling Graph || Fuson [l SE3 || Databsse K s
Full Bundle
> Detect and delete redundant keyframes Adjustment Loop Closing
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ORB-SLAM2: Loop-Closing & Bundle Adjustment

% Loop detection
> Detects loop candidates
>  Compute similarity transformation
m  Ensure the loop is geometrically valid

% Loop correction
> Loop fusion
m  Fuse duplicate map-points
m Insert new edges to attach the loop
closure
> Optimize essential graph
m  Perform a pose graph optimization to
distribute the loop-closing error
along the graph
% Full bundle adjustment (FBA)
> Runs on separate thread in ORB-SLAM?2
> Optimizes the global-map
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Edge-SLAM: Mobile Device Operation

O/
L X4

K/
L X4
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Maintain a local-map

Run tracking thread
> New keyframe decision
m  Process partially (cond. 3-5)
m If created, send to edge immediately
> Fully replace local-map update received
from edge with current local-map
> Iftracking lost, then
m  Tryrelocalization using current
local-map
m  Send a frame every 0.5s to edge to
receive a relocalization-specific
local-map update
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% Maintain the global-map
% Run local-mapping thread
> New keyframe decision
m  Finalize decision (cond. 1, 2)
> Added new module: local-map update

% Run loop-closing thread
¢ Run full bundle adjustment thread
% Communicate with mobile device through
asynchronous TCP connections
> All connections are initiated between the

tracking thread on mobile device and the
local-mapping thread on the edge
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Edge-SLAM: Local-Map Update

% Objectives
> Minimize mobile device drift
> Minimize local-map reconstruction
overhead on mobile device
> Limit network usage
%  Operation
> Run as part of local-mapping thread on edge
> Timer-based updates
m Ifglobal-map has changed, send a
local-map update every 5s
> Alocal-map update consists of the most
recent 6 keyframes along with their
map-points
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Edge-SLAM: Experiment Setup (1/3)

7

% Two distinct mobile devices
> NVIDIA JETSON-TX2
m  64-bit NVIDIA Denver and ARM
Cortex-A57 CPUs
m  NVIDIA Pascal GPU with 256
CUDA-cores
m 8 GB Memory

m  Comparable to Magic Leap One
> Dell Latitude laptop

m Intel Core i5-520M (2.4GHz, 3M
cache, Dual-Core)

m Intel HD Graphics with dynamic
frequency
8 GB Memory

m  Loosely comparable to Microsoft

Hololens
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Edge-SLAM: Experiment Setup (2/3)

% Edge machine
> Dell XPS desktop
m Intel Corei7 9700K
(8-Core/8-Thread, 12MB Cache,
Overclocked up to 4.6GHz)
m  NVIDIA GeForce GTX 1080
m 32 GB Memory
% Network

> JETSON-TX2 connected to lab private Wi-Fi
network

> Dell laptop connected to campus public
Wi-Fi network

> Dell desktop connected to campus wired
network
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Edge-SLAM: Experiment Setup (3/3)

7

< Datasets
> Pre-collected RGB-D dataset of campus
building floor (52,427 frames, 1,774
seconds) for long-run experiments
> TUM RGB-D dataset for short-run
experiments
% Experiments
> Run ORB-SLAM2 on JETSON-TX2
(ORB-SLAM2 JTX2)
> Run ORB-SLAMZ2 on Dell laptop
(ORB-SLAM2 L)
> Run Edge-SLAM on JETSON-TX2 and Dell
desktop (Edge-SLAM JTX2-D)
> Run Edge-SLAM on Dell laptop and Dell
desktop (Edge-SLAM L-D)
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Edge-SLAM Evaluation: Resource Usage
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Edge-SLAM on the mobile device Edge-SLAM on the mobile device. The
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Edge-SLAM Evaluation: Local-Map Update Latency

Edge-SLAM | Edge-SLAM JTX2-D | Edge-SLAM L-D
Map Update (ms) (ms)

Construct Map Update
57.09 £0.69 58.30 £0.66
on Edge
Re:Constenct MapUpdate 41143 +4.84 285.68 +3.18

on Mobile Device

Edge-SLAM | Edge-SLAM JTX2-D | Edge-SLAM L-D
Keyframe Update (ms) (ms)

Transmit Keyframe from ‘

Mobile Device to Edge

162.43 +£2.90 ’ 142.53 £6.38
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Edge-SLAM Evaluation: Mapping Accuracy

isual-SLAM | ORB-SLAM2

v

Edge-SLAM
JTX2-D

ORB-SLAM2 | Edge-SLAM
L L-D

Mean Localization
Error (cm)

‘ 20.59 £10.92 ‘ 19.23 +11.32

20.90 £12.77 | 21.39 £9.16 l
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Summary
%  Edge-SLAM adapts edge computing architecture into Tracking
Visual-SLAM on mobile devices with minimal loss of e | P IT‘:::«” I ocpl = ~
% Edge-SLAM offloads the computation-intensive modules e | P g ?
of Visual-SLAM to the edge. Device Recogmton o :; E
% Edge-SLAM reduces resources used on the mobile device T T ' """ %"'r;
< Edge-SLAM enables long operation of Visual-SLAM on Device e —— R
mobile devices by maintaining a low constant rate of e N A e l:
used resources e ey
%  We open-source our Edge-SLAM implementation which e
can be found at http://droneslab.github.io/edgeslam Uj“djs d‘IF‘gzl”:'u":::’i S I?l @H@ eyt
Fut Bund =
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