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Fig. 1: EARTH introduces an excavation autonomy framework with a focus on formal safety and robust perception. Figure shows
our autonomous Takeuchi TB-235 excavator in real-world and simulated environments. Our simulator, TERA, supports realistic soil and
deformation models.

Abstract— The construction industry faces significant chal-
lenges due to workforce shortages and the need for increased
safety and productivity. Autonomous excavators and construc-
tion machinery offer a promising solution leveraging recent
advances in autonomy. However, deploying large autonomous
machines presents unique hurdles in areas such as safe planning
and control, reliable state estimation, and robust perception
in dynamic environments. This paper introduces EARTH, a
framework designed to enable the autonomy for excavators. We
detail the EARTH platform architecture, identify key challenges
inherent in autonomous excavation, and propose potential
solutions. Preliminary results demonstrating the effectiveness of
our approach are presented, along with a discussion outlining
future research directions to advance autonomous construction
and excavation.

I. INTRODUCTION

Autonomous robotics has been a promising solution to
mitigate risks to human workers by operating in danger-
ous conditions while simultaneously increasing productivity
through continuous operation and precise execution. Mobile
robots equipped with robotic manipulators help pre/post
fabrication [1], UAVs facilitate inspection and monitoring
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[2] and exoskeletons to reduce effort [3], Despite these
advances, the adoption of autonomous systems in the field
is limited due to lack of safe and generalizable algorithms,
and uncertainty in environments. Incorporating autonomy
into large machines such as excavators requires increase
reliability as it operates under extreme environments and can
cause catastrophic failures.

Although full-size excavators have been previously ex-
plored in prior work ([4], [5]), significant challenges remain
in adapting autonomous systems to these large, complex,
hydraulic machines. First, pose estimation of the excavator
end-effector is difficult due to limited sensing, perception
occlusion and noisy measurements. Second, increased size
of actuators and non-linear response of hydraulics increases
complexity in control. Third, given the potential for signifi-
cant damage in case of collisions, safety in motion planning
is critical. Finally, current simulation environments support-
ing these machines and deformable terrain are limited. To
address these challenges, we propose the EARTH1 (Excava-
tion Autonomy with Resilient Traversability and Handling)
framework, an autonomy solution with specific emphasis on
excavation autonomy. Our contributions are as follows:

1) Introduce a software-stack for autonomous excavators

1https://github.com/droneslab/EARTH
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based on the perception-estimation-planning-control
paradigm comprising several customizable modules

2) Propose a simulation environment comprising a
Takeuchi TB-235 excavator and deformable terrain
capabilities

3) Novel manipulator pose-estimation with hydraulic
pressure and inertial sensing

4) A safety-focused planning method based on control
barrier and lyapunov functions

II. EXCAVATION AUTONOMY STACK

Figure 3 illustrates our excavation stack, the software ar-
chitecture enabling autonomy on our Takeuchi TB-235 exca-
vator. The stack follows the perception-estimation-planning-
control paradigm [6] with a focus on modularity and safety.
The stack contains the following modules :

Sensing: The sensing module is responsible for interfacing
with a variety of sensors. These include LiDARs, cameras,
inertial measurement units (IMUs), hydraulic pressure trans-
ducers, geartooth encoders (for cab position), and GNSS
receivers. Precise time synchronization is achieved through
hardware clock sync for the LiDARs and cameras, while
other sensors rely on ROS for time alignment. This coordi-
nated sensor data streams are made available as ROS2 topics
for use by other modules.

Estimation: The state-estimation module (described in
subsection IV-A) is split into two submodules. The first fo-
cuses on localization and mapping, accurately determining
the excavator’s pose within its environment and generating
high-resolution maps essential for path planning and task
execution. The second submodule specializes in estimating
the joint states and efforts of the excavator’s primary
actuators: the boom, arm, bucket, and cab.

Planning: The planning module employs a hierarchical
approach, encompassing both global and local path planning
through its “Nav Planner” components. This planner is re-
sponsible for determining optimal routes, considering factors
such as terrain deformation, static and dynamic obstacle
avoidance, kinematic, and dynamic constraints. The core
attribute in achieving autonomous excavation involves ma-
nipulator trajectory planning. The “Manipulator Planner”
module is dedicated to handling the problems associated
with manipulator planning, including digging and dumping
operations in a safe and efficient manner.

Control: The control module translates the plans gen-
erated by the planning module into precise and efficient
actions. Structured similarly to the planning module, it
comprises two sub-modules: the “Nav Controller” and the
“Manipulator Controller.” The Nav Controller governs
the excavator’s movement by independently commanding
appropriate control to each of the tracks that satisfy ac-
tuator limits while minimizing actuation delay owing to
hydraulic dynamics. Meanwhile, the Manipulator Controller
employs an inverse kinematics approach to ensure accurate
and coordinated movements of the excavator’s boom, arm,
and bucket. Furthermore, the controller should be robust to

handle disturbances during digging operations and compen-
sate for unmodeled dynamic variations induced by material
removal and accumulation during excavation.

Actuation: Mirroring the sensing module’s architecture,
the actuation module is responsible for interfacing with the
excavator’s physical hydraulic actuators. Traditional manu-
ally operated excavators, such as the TB235-2 [7], employ
multiple levers and pedals to control each actuator. In our
excavator, we have replaced the physical levers with elec-
tronically controllable hardware that communicates using
CAN. This interface is provided through a ROS wrapper via
the DeltaCAN msg, a custom message encapsulating this
control scheme. This data structure provides generalizability
and can be replicated to other excavator configurations.

Importantly, the estimation, planning, and control modules
within the autonomy stack are designed with a modular
architecture, ensuring they are hardware and platform agnos-
tic. This means they can operate effectively across diverse
physical platforms and seamlessly integrate with simulation
environments.

III. SIMULATION

Developing autonomy algorithms for outdoor tasks such as
excavation is extremely challenging. Perception in offroad
environments where excavation tasks happen is arguably
more challenging than in more structured environments such
as roads. Further, task-specific perception involves under-
standing soil characteristics, detailed terrain models, and full
360° awareness for safety. Motion planning for navigation in-
volves reasoning about obstacles as well as terrain elevations
as is the case in most offroad scenarios. Task-based planning
requires detailed modeling of hydraulic actuation (typical for
excavator arms), contact dynamics with the ground during
excavation and understanding of terrain deformation during
the task. Finally, control requires precise ability to follow
specified plans for safety as well as exact task execution.
Developing all these components require detailed testing
that is challenging in realistic environments. A method to
alleviate this challenge is the use of realistic simulation.

To address the mentioned concerns, we developed
TERA2 [8] (Simulator for Terrain Excavation Robot Auton-
omy), introducing the following :

1) The first comprehensive simulation environment to
study autonomous excavation. TERA allows realistic
modeling of perception, planning and control of exca-
vators in realistic environments allowing the study of
all aspects of excavation autonomy

2) Built to be customizable and extensible allowing users
to import their excavators, environments and exca-
vation tasks easily. With ROS integration, it is easy
to quickly integrate existing autonomy modules as
well. This allows users to quickly re-create their en-
vironment and focus on the development of autonomy
algorithms

2https://droneslab.github.io/tera/
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Fig. 3: Illustrates our excavation autonomy stack detailed in section II. Estimation, Planning and Control modules are platform agnostic
and work seamlessly on our Takeuchi TB-235 excavator and in TERA, our simulation environment.

3) Using Unity and AGX, TERA is scalable to use mul-
tiple excavators while performing high-fidelity simula-
tion including detailed contact physics for excavation
in real-time on desktop hardware

A. Overview

TERA offers a highly realistic simulation environment
capable of modeling realistic excavators, realistic environ-
ments, and their interactions. It uses Unity3D for visualiza-
tion due to it’s powerful graphics rendering and development
framework that aid in rapidly developing realistic, efficient
and easily deployable simulations. Interactions with the
terrain occur using the AGX Dynamics Plugin [9]. The AGX
Terrain allows for modeling and simulation of soil defor-
mation via interactions between parts of the robot (tracks,
bucket) and the soil. We can model physical properties of
the terrain to adapt it to various real life terrains such as
soil, gravel, sand, and others.

All communications with the high level application occur
using ROS2. Users communicate with the excavator via
the custom DeltaCAN message. AGX Dynamics performs
internal dynamics calculations and updates the state of the
excavator components based on the control. In parallel, the
sensor information is also computed. Once the simulation
step is performed, the new excavator state values and the
sensor values are retrieved. These values are wrapped in the
desired ROS bindings and provided to the user.

B. Robot Modeling

The excavator model consists of 4 main components -
a 4 degree-of-freedom manipulator, the cab, the base and
the tracks. The manipulator is mounted on the cab which
has the ability to slew freely about the base. The base
is rigidly attached to the track mechanism which allows
the excavator to move with a non-holonomic differential

drive mechanism. This excavator was first modeled in CAD.
Each component of the robot was individually modeled.
Then, the models were converted to URDFs (Unified Robot
Description Format) along with their physical properties such
as mass, inertia matrix, stiffness, dampening, friction etc.

C. Terrain Interaction

The terrain interactions are modeled according to [10],
where the terrain is divided into multiple granularity levels.
Each level involves different calculation complexities, offer-
ing a reasonable balance between computational effort and
accuracy. When the bucket makes contact with the terrain, the
angle made by the cutting edge and the ground is evaluated.
Based on the angle of the edge and the terrain shearing
properties, the terrain deforms. When the terrain deforms,
the excavated soil is converted to dynamic soil particles.
These particles interact with other particles, terrain meshes
and the excavator itself. The mesh location from which the
soil was excavated from now contains a depression indicating
the removal of material. Figure 4 shows a digital elevation
model view of the simulated terrain after performing digging
motion. We can see that deformation is caused by both
digging (the bucket interaction with terrain) as well as the
motion (track interaction with terrain) of the excavator.

D. Sensor Simulation

Sensors are integrated into TERA’s excavators via the
Unity Sensors plugin [11]. The sensor suite includes RGB
cameras, RGBD cameras, IMUs and LiDARs. Each sensor’s
internal parameters such as the camera’s resolution, IMU
acceleration bias/noise, etc. can be defined explicitly.

E. Realistic Actuation

Once the URDF and the 3D Meshes are defined, it can
be imported into Unity. Each link in the kinematic chain is
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Fig. 4: Elevation model of the terrain after three excavation tasks,
showing accurate deformation due to digging. The track-threads
from the excavator’s traversal are visible, with the elevation model
color-coded to highlight the unit changes before and after the
experiment.
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Fig. 5: Red-white point cloud shows 3D map generated using a
LiDAR SLAM method. White streak shows artifacts in map due to
the body of the excavator mapped into the resulting 3D point cloud.
Optimizing sensor placement can mitigate this issue.

defined with it’s mass, inertia matrix (in X-Y-Z axis) and
joint type. For revolute joints, a hinge constraint is defined
between each link as they rotate about their Z axis. The
constraint includes capabilities of modeling rotation limits,
target speed controllers and friction blocks with defined
compliance (stiffness), damping and force limits. A target
speed controller is utilized to move the joints. Regardless
of the input velocity command, the speed controller reaches
the target speed with minimal transient response time. For
the purpose of maintaining a model-agnostic nature of the
proposed simulator, we allow the lower-level controller to
have nearly infinite acceleration, which is hardly achievable
in real-world applications. To replicate the motion of a real
excavator, we conducted an experimental study where a
various range of input signals were commanded and joint
velocity was monitored by the onboard inclinometers that
provide angular position and velocity with respect to gravity.
The actual velocity profiles are parameterized as:

ωi(t) = ωi
ss(1 + sin(ηit+ φi)e−βit) (1)

where ωi
ss is the angular velocity of the joint at steady states,

obtained from the experimental study and i = [boom, arm,
bucket]. The user-selected performance parameters, ηi, βi

and φi, govern the frequency of oscillation, decay rate and
delay, respectively, which can be freely selected based on
hardware performance. Using Equation 1, we assign ηi = 20.
βi = 6 and φi = 0 based on empirical testing.

F. Control

To test the actuation of the tracks and the sim-to-real
transfer capability of the simulator, the real excavator was
controlled by a conventional joy input. These joystick inputs
were recorded and replayed as input to the simulator (via
ROS bag). The real excavator was equipped with 2 GPS
receivers in a Differential configuration which provides ac-
curate Latitude-Longitude-Altitude upto 0.75m along with
heading. The Geodetic co-ordinates were converted to local

ENU (Cartesian XYZ) co-ordinates using the Geodetic-
ECEF-ENU conversion [12], [13]. The total track length
of the real excavator was 57.39m while the length of the
simulated excavator was 50.47m with an RMSE of 1.376m
between them. Fine-tuning of the terrain parameters based
on the real operational parameters could further reduce this
gap.

IV. CHALLENGES AND PROPOSED SOLUTIONS

A. State Estimation

Accurate state estimation is a fundamental challenge in
robotics and autonomous systems, particularly when dealing
with complex machinery like excavators. Noisy sensor data,
inherent sensing errors, and imprecise system dynamics
models can lead to significant estimation drift over time.
This issue is further compounded by the use of hydraulic
actuators, which often exhibit substantial dead-bands and
non-linear control responses. To address these challenges, ex-
cavator state estimation is divided into two key sub-modules:
localization and mapping, which focuses on accurately de-
termining the excavator’s pose within its environment and
generating high-resolution maps; and joint state and effort
estimation, which specializes in estimating the joint states
and efforts of the excavator’s primary actuators.

1) Localization and Mapping: Autonomous navigation
requires precise odometry, re-localization and high-resolution
mapping of the excavator’s region-of-operation (ROO).
While modern visual and LiDAR SLAM algorithms have
advanced significantly and can effectively address a wide
range of applications, certain challenges persist in the context
of excavation autonomy. Factors such as repeating features
in the environment, low and varying light conditions, oc-
clusion from large objects or terrain, and harsh operating
environments can degrade SLAM performance. Excavation-
specific SLAM methods, such as [insert reference to specific
method], have been developed to address these issues and
improve localization accuracy. However, reliably fusing data



from multiple sensor modalities (e.g., LiDAR, cameras,
IMUs) in the presence of occlusion remains an open problem
requiring investigation.

We evaluated several SLAM methods such as [14], [15],
[16] on our excavator platform. We present our findings and
propose solutions.

Sensor Occlusion: We observed that relying on a single
LiDAR or camera can be problematic due to occasional
occlusion by the excavator’s manipulator arm and body.
This obstruction hinders the SLAM algorithm’s ability to
perceive its surroundings effectively, leading to degraded
localization accuracy, potential tracking failures and artifacts
in the resulting map. While an effective solution to this
problem is using multiple sensors [17], occlusion detection
and management is crucial. We propose using our previous
and on-going work, PIXER [18] and L-DYNO [19], which
aid in eliminating unreliable features due to occlusion and
motion. Further, the dense maps generated by these SLAM
systems can be evaluated using Empir3D [20] for adequate
resolution and accuracy.

Global Localization: Achieving reliable global localiza-
tion for autonomous excavators requires a robust approach
that addresses the limitations of individual sensor modalities.
While GNSS fusion with SLAM offers a promising solution,
it faces challenges such as signal obstructions, multipath
errors, and the need for precise time synchronization. To
overcome these hurdles, we implemented a real-time fusion
system combining LiDAR-Inertial Odometry (LIO) with
Real-Time Kinematic (RTK) GNSS. This synergistic ap-
proach leverages the global positioning accuracy of RTK
GNSS while benefiting from the high-resolution position es-
timates provided by LIO. Furthermore, we integrated known
reference points or ground control points (GCPs) with pre-
defined GNSS coordinates to serve as fiducials for improved
localization accuracy within the ROO and consistency across
multiple sessions.

Traversability Estimation: Accurate and frequently up-
dated 3D maps are crucial for safe and efficient operation.
High-resolution LiDARs coupled with SLAM techniques
can generate detailed maps, but artifacts introduced by the
excavator itself often hinder traversability estimation. Our
preliminary results demonstrate that the excavator arm can
appear as a blurred obstacle in the map, misleading the nav-
igation system (see Figure 5). This issue highlights the need
for optimized sensor placement to minimize such artifacts
and maximize mapping accuracy. We are currently inves-
tigating sensor placement optimization using Mixed-integer-
linear-programming (MILP) [21]. This approach allows us to
systematically explore different sensor configurations on the
excavator and identify the optimal location that minimizes
mapping errors and improves traversability estimation.

2) Joint State and Effort Estimation: Precise manipulation
in autonomous excavators hinges on accurate joint state and
effort estimation. Electrically powered manipulators typically
rely on motor encoders and controllers for these measure-
ments. However, hydraulic actuators, common in excavators,
lack direct measurement capabilities for joint states and

efforts, posing a significant challenge. Previous approaches,
such as HEAP, have employed draw-wire encoders to mea-
sure piston length, which correlates with joint angles. While
effective, this method is expensive and susceptible to damage
in harsh operating environments. Inertial sensors like IMUs
and inclinometers offer an alternative but suffer from drift
over time, compromising accuracy.

We present our findings and propose solutions to address
these limitations:

Fusion of Inertial Sensing and Hydraulic Pressure:
Our approach leverages the pressure transducers on each
excavator piston. By studying the relationship between fluid
pressure and joint states/efforts, we aim to develop a robust
estimation model. Preliminary tests demonstrate a strong
correlation between pressure measurements and joint motion,
particularly when constrained by payload in the bucket.
However, mathematically modeling the relationship between
joint torques and pressure values is not feasible due to the
many-to-one mapping between values. High pressure can
imply high angular velocities of the joint with an unloaded
bucket or a slow motion with a loaded bucket. Furthermore,
each joint is controlled by two pistons which adds to the
complications. Currently, we are working on a data driven
approach that fuses inertial sensor readings and the pressure
values to output joint angles.

Payload and Effort Estimation: The presence of multiple
pressure sensors allows us to jointly estimate not only
joint position and effort but also payload weight within
the excavator’s bucket. This assists downstream applications
such as digging and excavation where knowing the amount of
unearthed material is important. Preliminary results (Figure 7
show strong spearman correlation between joint angles and
hydraulic pressure for different excavator links. We aim to
develop a pressure-inclinometer estimation system to accu-
rately track the excavator joints.

An additional challenge lies in evaluating the accuracy
of our joint state estimation. Traditional motion capture
systems, often used for ground truth pose tracking, face
limitations in outdoor scenarios involving large machinery
like excavators. To address this, we employ a system utilizing
AprilTags [22] (as demonstrated in Figure 6), enabling us
to measure the ground truth pose of the excavator’s joints.
Significant tuning was required in terms of AprilTag size,
camera exposure and resolution settings, and frame trans-
formations to engineer a robust ground-truth pose solution
capable of handling the complexities of our experimental
setup.

B. Safe Planning

Ensuring safe and reliable operation for heavy-duty robots
like excavators presents unique challenges in complex en-
vironments. While traditional planning approaches often
rely on post-hoc collision checking, leaving a margin of
uncertainty. This motivates us to explore more formal safe
planning methods which contribute to the development of
trustworthy autonomous solution.
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Fig. 6: Arm Pose Estimation: Estimation Evaluation (Left) The figure illustrates the placement of AprilTags on the excavator links(boom,
arm, and bucket) and verification of IMU-based pose estimation using visually obtained ground-truth. Joint State Estimation(Right) with
approximations on effective link-lengths and joint placements. The figure also illustrates the excavator’s kinematic structure used for DH
parameter modeling. The links l1, l2, l3 and l4 correspond to fixed link length (for offset), effective boom, arm and end effector lengths
respectively

Fig. 7: Spearman correlation analysis between hydraulic pressure
and joint angles for different excavator links. The inset plot
highlights the bucket’s extension phase, showing a strong negative
correlation.

Safe planning not only mitigates risks associated with
human injury, equipment damage, and environmental harm
but also optimizes efficiency by enforcing constraints on key
parameters. Consider the challenges excavators face: navigat-
ing through dense urban areas while avoiding collisions with
buildings, digging around underground utilities without caus-
ing damage, operating in human collaborative workspace. By
leveraging Control Lyapunov and Control Barrier functions
(CLFs-CBFs) [23], [24], we can design reactive control-
based planners that proactively respond to obstacles, ensuring
safe operation well before any potential collisions occur. This
approach provides formal guarantees of safety and stability,
aligning with stringent industry standards.

In this work, we consider the kinematics of a 3-link planar
robotic arm as the governing model to design CLF and CBF,

which is given by:

Ṗe = J (θ)θ̇ (2)

where Pe(θ) = [xe, ye] is the set of cartesian coordinates of
the end-effector position. θ = [θ1, θ2, θ3] and θ̇ are the joint
angles and velocities respectively. Here we used the Denavit-
Hartenberg (DH parameter) convention to construct the total
transformation matrix from the manipulator base frame to the
end-effector frame, from which the end-effector equations
can be obtained. The Jacobian J (θ) can be obtained by
taking partial derivatives w.r.t. the joint angles. In order
to ensure stability of the system, we defined a candidate
Lyapunov function V in the form of two-norm distance
between the target and end-effector positions, which is given
by:

V (Pe) = (xe(θ)− xf )
2 + (ye(θ)− yf )

2 (3)

which is positive definite ∀Pe(θ) �= Pf , where Pf =
[xf , yf ] is the target position. We adapted the exponentially
stabilizing control Lyapunov function (ES-CLF) notion in-
troduced by [25]. Furthermore, to ensure safety via collision
avoidance, CBF is formulated in terms of a signed-distance
function (SDF):

h(Pe) = (xe(θ)− xf )
2 + (ye(θ)− yf )

2 − d2 (4)

where d is the clearance distance.
Finally, we obtained the control input θ̇ and corresponding

trajectory by jointly optimizing the CLF and CBF using
quadratic programming. The CLF-CBF-QP [26], [25], [27]
formulation is given by:

min
θ̇,δ

1

2
‖θ̇‖2 + pδ2 (5)

s.t. V̇ ≤ −γ(V ) + δ (6)

ḣ ≥ −α(h) (7)

where δ is the slack variable and p is its weight. For Initial
results, we run our simulation experiments with p = 0.



Additionally, α(.) and γ(.) denote a extended class Ke
∞. In

this work, we considered it as positive scalar constant.
Our preliminary simulation result is depicted in Figure 8

(Left) and the corresponding optimal safe and stable end-
effector trajectory is shown in yellow. Although the proposed
method offers a strong foundation for safe excavator con-
trol and planning, several practical challenges need to be
addressed:

1) Simple end-effector collision avoidance is insufficient
as the rigid links of the excavator arm can collide
with obstacles even if the end-effector maintains a safe
distance.

2) The proposed point-wise optimal control scheme re-
sults in a passive control, this often leads to undesired
motion when the safety criteria are violated.

3) The optimized trajectory should account for the joint
state, velocity, and actuation limits.

To address full-body collision avoidance, we develop a new
CBF which accounts for the geometry of the each link.The
entire link is parameterized by an ellipse whose major
and minor axes are defined by length and width of the
link, receptively. The center of this ellipse for each link is
determined by the kinematics of the preceding links plus half
the length of the current link. This elliptical representation
allows us to efficiently check for collisions between the
entire manipulator and obstacles in its environment. The
preliminary results for full body collision avoidance in Fig-
ure 8 (Right) shows that the entire body of manipulator is
able to avoid completely colliding into the point obstacle
(inflated with a small radius for visualization). Synthesizing
controller within QP-framework often results in undesirable
trajectories. To maintain desired performance while ensuring
safety, one promising direction to explore is to incorporate
a trajectory re-planning strategy, as introduced in [28]. The
last aforementioned challenge can be effectively handled by
including additional constraints in the current formulation.
However, this may lead to feasibility issues, as the constraints
could conflict or limit each other. Formulating a safety def-
inition that inherently satisfies joint limits would be a great
avenue to explore further. In addition, incorporating energy-
based safety constraints [29] and feasibility constraints [30]
would help accommodate higher-order dynamic components.

V. CONCLUSION AND FUTURE WORK

Engineering autonomy for excavators: Developing auton-
omy for excavators presents unique challenges compared
to smaller mobile robots or autonomous vehicles. These
massive machines operate in unstructured and dynamic con-
struction environments, often subject to change due to the
excavator’s own actions. This demands robust and reliable
algorithms that prioritize safety while navigating complex
terrains and unpredictable obstacles. Further complicating
matters is the complexity of hydraulic actuation systems
commonly found in excavators. Large dead-bands, non-linear
responses, and performance variations due to ambient and
fluid temperatures make accurate modeling and control a
significant hurdle. Our approach to building autonomy is

addressing these challenges through a multi-faceted strategy
currently in development: by optimizing sensor placement
for maximum information gathering; exploring sensor fusion
techniques; investigating the incorporation of redundancy in
safety critical systems to ensure continued operation even in
the event of failures; and researching algorithms that will
provide formal guarantees for safe task execution.
Safe and precise excavation: The successful deployment of
autonomous excavators requires a high degree of precision
and safety during excavation tasks. This requirement stems
from the fundamental objective of autonomous systems:
to mitigate human risk and increase operational efficiency.
However, achieving this precision is complicated by several
factors inherent to these platforms. The substantial size and
weight of these machines, combined with the non-linear
and temperature-dependent behavior of hydraulic actuation
systems, pose significant challenges for precise control.
Thus, developing robust algorithms capable of accurately
modeling and compensating for these complexities is crucial
for ensuring safe and reliable autonomous excavation. To
address these challenges, we have adopted a multi-pronged
approach centered around simulation and real-world testing.
The high-fidelity simulator, TERA [8] enables us to test
and refine our algorithms in a safe and controlled virtual
environment. The simulator incorporates realistic physics to
accurately represent the excavator’s dynamics. This helps
bridge the sim-to-real gap, ensuring that our solutions are
robust and transferable to real-world scenarios. Following
extensive simulation testing and validation, we conduct thor-
ough field trials to further validate and refine our algorithms,
and demonstrate their efficacy.
Embodied autonomy: Finally, integrating the individual
autonomy components into a cohesive system proves to be
one of the most delicate tasks. This integration phase is
critical because it directly impacts the excavator’s ability to
perform complex tasks autonomously while maintaining the
highest levels of safety. Our approach leverages a modular
architecture (section II), allowing for independent testing
and refinement of each component before integrating them
into the final system. Extensive simulation and field testing
is currently underway to validate the performance of our
algorithms, and we anticipate sharing final results in the near
future.
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