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Supplementary Material

The supplementary material extends the evaluation and
discussion provided in the main manuscript. We show, in detail
the efficacy and viability of using Empir3D as a general-
purpose point cloud quality evaluation framework. The sup-
plementary material is organized as follows, subsection I-A
has additional observations about the SLAM experiments
in section IV of the main paper including our method of
collecting ground truth in the real world and the details
about simulations, subsection I-B demonstrates how Empir3D
can be used in learning pipelines further and subsection I-C
describes the compute performance including memory and
CPU utilization in details. Finally, in section II we discuss
how Empir3D can be used example applications.

I. EVALUATION

A. Evaluation on Dense SLAM

Figure 3 shows different views of the Warehouse dataset,
including magnified views for qualitative analysis. These im-
ages clearly show that SHINE and FAST-LIO2 significantly
outperform LeGO-LOAM. Empir3D values corroborate with
qualitative results by identifying SHINE’s point cloud as the
one with highest Qc, Qr, and Qa whereas Dc identifies FAST-
LIO2. Of note, SHINE has a lower artifact-score (compared
to FAST-LIO2) indicating the presence of artifacts, observed
in Figure 3 where the pillars appear distorted due to artifacts.
Further, Empir3D also accurately quantifies the lower resolu-
tion in LeGO-LOAM compared to others.

1) Constructing ground truth point clouds: Acquiring
ground truth for point cloud evaluation in a real-world setting
is a challenging task. Although CAD and BIM files can be
used, they’re generally outdated and seldom represent the
current environment. In outdoor settings, topographical maps
and digital elevation models (DEMs) are sparse and lack rich
3D information. A common practice to build dense 3D models
is the use of survey grade LiDAR scanners [1, 5], these use
ground truth poses (from RTK GPS or Total-Stations) along
with LiDAR scans to stitch a high-resolution 3D representation
of the environment.

We used a similar approach to build ground truth point
clouds. First, we capture ground truth poses using a Robotic
Total-Station [4] which is essentially a theodolite with an inte-
grated distance meter that can measure distances and angles.
This enables extremely precise pose estimation (millimeter-
level) and is widely used in infrastructure and geospatial
surveying [2, 8]. Second, we capture LiDAR scans at the

exact locations where poses are measured. This is achieved
by placing a LiDAR mounted on a custom tripod, the tripod
is equirped with a nadir pointed laser that projects a cross-hair
onto carefully placed markers on the ground to align scans.
For the Davis dataset (section IV in the main paper), over 400
poses (Figure 1) and corresponding scans were captured with
this method. Finally, the scans are stitched into a dense point
cloud of the environment with the recorded poses providing
initial alignment. ICP was used for fine registration.
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Fig. 1: Poses and point cloud for Davis dataset

Fig. 2: Warehouse environment in simulation. Robot third-person
view (left) and sensor output (right)

2) Simulation environment: The simulator (Figure 2) built
to study Empir3D’s performance supports various environ-
ments, these are mesh files of objects and structures and can
be built using popular tools like Blender [3]. The simulator
supports three variants of the Ouster OS series LiDARs,
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Qc = 0.62 | Qt = 0.62 

Dc = 1.18E+07 | Dh = 12.05

Qr = 0.83 | Qa = 0.82 
Qc = 0.78 | Qt = 0.85 

Dc = 7.39E+06 | Dh = 11.87

Qr = 1.00 | Qa = 0.85 
Qc = 0.83 | Qt = 0.81 

Dc = 7.85E+06 | Dh = 3.96

Fig. 3: Evaluation on Warehouse dataset (simulated); (a),(b),(c),(d) show point clouds ground truth, LeGO-LOAM, FAST-LIO2 and SHINE.
(d) exhibits highest Qc,Qa,Qa as shown in zoomed-in view but contains artifacts (lower Qt compared to (c)). Empir3D accurately quantifies
all aspects of quality while Dc and Dh identify (c) and (d) as the most similar

namely the OS-0, OS-1 and OS-2 sensors. These allow a max
vertical field-of-view of 90, 45 and 22.5 degrees respectively.
Each of the sensor can be configured in three resolutions -
128, 64 and 32 channels. This totals to nine distinct LiDARs
in simulation. We also add noise to simulate realistic outputs
which can be tuned to match the sensor. Additionally, the
simulator outputs IMU data and ground truth odometry for
use in SLAM methods that need IMU or need external pose
information.

B. Evaluation on point cloud completion

Figure 4 shows evaluation of point clouds generated using
three point cloud completion networks, namely, PCN [10],
TOPNET [9] and ECG [6]. PCN and ECG output rela-

tively high quality point clouds while TOPNET lags behind,
producing noisy and incomplete results. These observations
are corroborated by Empir3D’s metrics which denote ECG’s
output as the one with highest quality while Dc and Dh show
PCN as the most similar. At the same time, Dh indicates
lower similarity for ECG’s point clouds contradicting visual
observations and other metrics. This illustrates Dc and Dh’s
limitations in quantitative quality evaluation.

C. Compute Performance

Empir3D compute performance is evaluated by calculating
quality metrics for a sample point cloud. We compute Em-
pir3D for a wide range of region sizes while Dc and Dh are
calculated on the entire point clouds. Region sizes of 1, 2,
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Fig. 4: Evaluation on point cloud completion, Lamp from MVP [7] reconstructed using PCN [10], TOPNET [9], ECG [6]. ECG generates
highest quality point clouds which is confirmed by Empir3D metrics while Dc and Dh identify PCN despite presence of artifacts and poor
reconstruction.

5, 10, 15, 20, 30, 50, 100 meters are chosen and run-time
along with CPU and memory utilization is measured. Further,
we repeat the experiments by limiting number of CPU cores
for multi-threading providing some insights on computing on
resource constrained hardware.

Using Dc and Dh as baselines for reference, we observe
that their CPU utilization is low and correspondingly the
time taken to complete the evaluation is high. In contrast,
our implementation of Empir3D, trades CPU utilization for
execution time. In Figure 5, we demonstrate this trade-off
along with the effect of choosing different region sizes for
parallelization on a benchmark point cloud. We observe that
for smaller region size configuration, the CPU utilization is
higher. As the region size is increased, the utilization dips as
the region size grows closer to the size of the point cloud.

Eventually, Empir3D’s parallel implementation will reach a
CPU utilization parity with Dc and Dh where entire point
clouds are loaded on a single thread.

On the other hand, we observe a trend in the execution time
that might appear unusual at first glance. The time taken by
Empir3D starts to decrease with increase in region size but
rises again for even higher values. We note that the reasons
for this effect are two-fold. With much smaller region sizes,
the individual region comparisons are quick. The major reason
for this is that there are fewer points to consider for the
closest point match. But, there are many regions to compute
leading to a longer time. As we increase the region size,
the number of regions to compare reduces giving Empir3D
a performance boost. At the same time, the time taken for the
closest point search for individual regions increases. Finally,



Fig. 5: Comparative analysis of memory, CPU utilization and computation time across different region sizes (r) and number of processor
cores.1 Memory utilization remains relatively constant across various core counts, whereas CPU utilization increases with more cores,
especially for smaller region sizes before decreasing again when regions become too large for multi-threading. Computation time decreases
significantly with the increase in region size up to a certain point, beyond which the benefits plateau, as shown in the benchmarks for 1, 2,
4, and 8 core computation of Empir3D, compared to the baseline single-threaded implementations Dc and Dh.

as the region size grows close to the full map, the time
taken for closest point matches dominates leading to longer
execution times. We hope that this analysis will help our
readers make a judicious choice for the region size parameter
for parallelization. Further, we note that as an added benefit
of using lower region sizes is the lower memory usage.

Fig. 6: Plot shows change in Empir3D metrics with increase in region
size (r). Resolution and accuracy are affected by averaging while
coverage and artifact-score are not.

Since Empir3D metrics are averaged, a choice of region
size will affect the actual values of some metrics (Figure 6).

While coverage and artifact-score are unaffected by region
size, accuracy and resolution are affected by the averaging.
However, this should not affect comparisons between different
point clouds as long as the same region size is used for the
comparisons.

Region size affects CPU usage (thus time) and the memory
usage. From our analysis, we make these recommendations:

• Use lower regions sizes on memory constrained devices
• Use higher region sizes in the order of map size on

compute constrained devices
• On unconstrained devices, use the region size to split the

map into as many chunks in the order of the number of
threads available on the device

II. APPLICATIONS AND USE-CASES

To illustrate Empir3D’s usage, consider the problem of
selecting a suitable LiDAR sensor for dense mapping. Given
Ouster OS-0 and OS-1 LiDARs, with vertical FOV of 90 and
45 degrees respectively, a range of 35m and 90m respectively
and a vertical resolution of 128 channels, we simulate both
sensors in our simulator (Figure 2) and map the Warehouse
environment using FAST-LIO2. Figure 7 shows the point
clouds and corresponding Empir3D metrics. FAST-LIO2 with
OS-0 generated pcdOS−0 and OS-1 generated pcdOS−1.
pcdOS−0 has higher coverage at 90.5% compared to 89.36%

in pcdOS−1, this is primarily due to the larger V-FOV of
the OS-0 LiDAR. pcdOS−1 on the other hand, has higher
resolution at 97.86% compared to 95.02% in pcdOS−0, this
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Fig. 7: Choosing sensors based on coverage and resolution; study shows Empir3D used to quantify performance of two LiDARs, namely
the Ouster OS-0 and OS-1 128 channel. When Warehouse environment is mapped using FAST-LIO2 with OS-0 the resulting point cloud
exhibits higher overall coverage thanks to the increased vertical FOV while OS-1’s point cloud is higher resolution increased vertical scan
density.

can be attributed to the spreading out of the 128 available
vertical channels over different FOVs that produce different
densities. Results indicate that the OS-1 is a better choice in
this case due to the higher resolution in the maps despite the
expanded coverage of OS-0.

This style of assessment can help pick sensors and algo-
rithms based on expected coverage and resolution. Higher
coverage and resolution generally results in improved SLAM
performance, both in localization and mapping. This is because
an increase in these metrics indicates an increase the number
of features detected in the point cloud. To demonstrate this
further, we compute ISS features [11] on both pcdOS−0

and pcdOS−1. pcdOS−0 contains 1,531,103 features while
pcdOS−1 contains 1,509,107, this confirms the hypothesis that
an increase of 1.14% in coverage results in 1.45% increase in
the number of points detected.
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